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Abstract

Summary: Understanding the effect of single nucleotide polymorphisms (SNPs) on the expression

level of genes is an important goal. We recently published a study in which we devised a multi-

SNP predictive model for gene expression in Lymphoblastoid cell lines (LCL), and showed that it

can robustly predict the expression of a small number of genes in test individuals. Here, we valid-

ate the generality of our models by predicting expression profiles for genes in LCL in an independ-

ent study, and extend the pool of predictable genes for which we are able to explain more than

25% of their expression variability to 232 genes across 14 different cell types. As the number of

people who obtained their SNP profiles through companies such as 23andMe is rising rapidly, we

developed GenoExp, a web-based tool in which users can upload their individual SNP data and ob-

tain predicted expression levels for the set of predictable genes across the 14 different cell types.

Our tool thus allows users with biological knowledge to study the possible effects that their set of

SNPs might have on these genes and predict their cell-specific expression levels relative to the

population average.

Availability and implementation: GenoExp is freely available at http://genie.weizmann.ac.il/pubs/

GenoExp/.

Contact: eran.segal@weizmann.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, individual genotype [i.e. single nucleotide poly-

morphisms (SNPs)] data have become readily accessible via direct-

to-consumer genetic testing (DTCGT) companies such as 23andMe,

deCODEme and Navigenics. These companies allow users to

acquire their allele calls at �0.5 M SNPs across the genome, as well

as a report of higher and lower risk for certain diseases, based on

their genotyped SNPs. Since we have recently developed methods to

robustly predict gene expression solely from genotype (Manor and

Segal, 2013), we decided to enable users to predict their own gene

expression across multiple cell types. To this end, we developed

GenoExp, a web-based tool where users can upload their raw geno-

type files obtained from any DTCGT company, and view their pre-

dicted gene expression (for a set of predictable genes) across 14

different cell types.

To demonstrate the application of GenoExp, we used 23andMe

genotype data provided willingly by one individual. We show the re-

sulting predictions of gene expression and highlight examples such

as a gene known to play a role in learning and memory that is pre-

dicted to be expressed above population-mean in brain cells of that

individual.
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2 Results

Our recently published method (Manor and Segal, 2013) was developed

using genotype and gene expression data taken from Lymphoblastoid

cell lines (LCLs) of 715 individuals. Therefore, we wished to test

whether we could apply it to other tissues or cell types as well. For this

purpose, we obtained two additional independent datasets that con-

tained both genotype and gene expression measurements for different

individuals: Genotype-Tissue Expression (GTEx; Lonsdale et al., 2013),

containing data from 91–166 individuals across 9 different cell types,

and Abundant Quantitative Trait Loci Exist for DNA Methylation and

Gene Expression in Human Brain (Brain-eQTL; Gibbs et al., 2010),

containing data from 146 individuals across 4 different brain cell types.

Our full dataset thus included gene expression data from a total of

18 124 unique genes across 1039 different individuals in 14 cell types

(Supplementary Table S1). Next, we ran our predictive pipeline separ-

ately for the data in each of the 14 cell types (Supplementary Figs.

S1–S4). Specifically, for each cell type we used a strict 5-fold cross-valid-

ation scheme to learn a predictive model for the expression of each gene

from the genotype of its cis-SNPs across individuals, and evaluated the

performance of our models on held-out test individuals from the same

gene and cell type. We found that across all cell types, a total of 232

unique genes exceeded an R2 of 0.25 on test data (i.e. more than 25%

of expression variability is explained on held-out individuals) in at least

one of the cell types. These genes were therefore defined as predictable

genes (Supplementary Table S2). Next, to test the generality of our

models, we further obtained additional genotype data coupled with

gene expression measurements of 381 twin-pairs (i.e. a total of 762 indi-

viduals) from the Multiple Tissue Human Expression Resource

(MuTHER; Grundberg et al., 2012). When applying the models learned

from LCLs to the MuTHER data, we found that in 79% of cases, we

predicted the correct direction of over- or under-expression (see

Supplementary text for extended details), strengthening the validity of

our predictions.

Finally, we wanted to allow users to predict their own gene

expression across multiple cell types using our predictive models. To

this end, we developed GenoExp, a web-based tool where users can

upload their raw genotype files obtained from any DTCGT com-

pany (e.g. 23andMe), and view their predicted gene expression (for

the predictable genes) across the different 14 cell types

(Supplementary Fig. S5). To demonstrate the application of

GenoExp, we used 23andME genotype data willingly provided by

one individual (Supplementary Fig. S6). We found that for this indi-

vidual, some genes are predicted as expressed above population-

mean in all cell types where prediction is possible (e.g. HLA-DRB5,

SNPs used for prediction in skin shown in Supplementary Fig. S7),

whereas other genes are predicted as expressed below population-

mean (e.g. KCTD10). Clearly, this over- and under-expression does

not necessarily imply functional consequences, yet they could be

suggestive. For example, the gene CHURC1, which was predicted to

be expressed above population-mean in all 4 cell types in the brain,

has a homolog that was shown to play a key role in the development

of neurons (Sheng et al., 2003), and a deletion of the genomic region

containing it has been linked to autism (Griswold et al., 2011). In

addition, the AMFR gene that was shown to be involved in the pro-

cess of learning and memory in the central nervous system of mice

(Yang et al., 2012) was also predicted to be expressed above popu-

lation-mean in the brain cells of the tested individual.

3 Discussion

One of the major goals of human genomics and medicine today is to

reach the stage of personalized medicine. That is, tailoring the

diagnosis, prognosis and treatment of diseases to a specific individ-

ual. The connections between gene expression and various human

diseases have long been made, and over- and under-expression of

specific genes have been shown to promote or protect from certain

diseases. In addition, studies have shown that many SNPs are signifi-

cantly associated with the expression of various genes, although no

predictive models are usually offered in these studies, making it

impossible for an individual to predict their own gene expression

from SNPs. This drawback has led us to recently publish a study

where we learn a predictive model of gene expression from multiple

SNPs. This modeling framework allows both the combination of dif-

ferent SNPs in the model, and the ability to predict the expression of

a gene in unseen individuals given their entire SNP profile. Here, we

extend our predictive models to 232 genes where we can explain

25% or more of the expression variability in held-out test individ-

uals in at least one of 14 cell types.

As acquiring one’s genetic data (i.e. SNP values) to learn more

about his or her own disease risks and biology is becoming easier and

more prevalent through companies such as 23andMe, we set out to

build a web-based tool, that would allow users to input their measured

SNP values, and obtain predictions of gene expression across the vari-

ous cell types in our study. We acknowledge that currently, only indi-

viduals that have biological knowledge could potentially benefit from

our tool. However, we believe that as more data of genotype and

phenotype becomes available, models such as ours can become more

sophisticated, allowing more accurate predictions of gene expression

profiles and ultimately of organismal phenotypes such as disease risks

or possible adverse effects of drugs, thereby enabling users to take

more knowledge-based actions when it comes to their well-being.

4 Methods

4.1 Data and pre-processing
For the HapMap LCL dataset, we downloaded the SNP genotypes of

phase 3 (Altshuler et al., 2010) and obtained gene expression measure-

ments for genes of these individuals from (Stranger et al., 2012). For

the GTEx and Brain-eQTL datasets, we downloaded the SNP geno-

type and gene expression measurements from (Gibbs et al., 2010;

Lonsdale et al., 2013) after obtaining approval. For the MuTHER

dataset, we downloaded SNP genotype from (Grundberg et al., 2012)

and corresponding gene expression measurements from the

ArrayExpress website (http://www.ebi.ac.uk/arrayexpress/). Except

for normalization of expression data discussed below, we did not pro-

cess the data further than the processing done by the original publica-

tions. For each gene, we extracted all cis-SNPs located inside the gene

or within 100 kb from the transcription start or end sites (gene loca-

tions were downloaded from the UCSC genome browser and SNP lo-

cations from dbSNP). We transformed each SNP to a discrete variable

with values of 0, 1 or 2, corresponding to the number of minor alleles

that each individual carries for the SNP. Therefore, an individual with

0 minor alleles will have a value of 0, etc.

4.2 Data normalization
Since the absolute values of gene expression in each dataset could be

different given the measurement platforms, to remove dataset

specific effects, we normalized the expression of every gene across

all individuals in each dataset to have a mean equal to 0 and stand-

ard deviation equal to 1.

4.3 Learning a predictive model of gene expression
For each gene, we learned a separate predictive model for each of

the 14 cell types in which the gene was expressed. We used the set
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of cis-SNPs as covariates in the prediction problem, and learned

the predictive model as described in Manor and Segal (2013).

However, due to the fact that the K-Nearest-Neighbor model is both

memory and computationally intensive, in the web-tool we re-

stricted ourselves to the regularized linear version of the model

(Supplementary Fig. S1).

4.4 Selecting the set of predictable genes
To select the set of predictable genes, we used the coefficient of

determination (i.e. R2) as out threshold. R2 is a measure of the pro-

portion of variance explained that is widely used when assessing the

accuracy of models aiming to predict a continuous variable such as

gene expression. The threshold of R2�0.25 is chosen since explain-

ing over 25% of individual gene expression variability on held-out

test data is considered by us to be a useful prediction.

4.5 Building a web-based tool to enable users to predict

their expression
For the web tool, we use a combination of Perl and Matlab scripts

to do the following: (i) Upload the user’s SNP genotypes file (i.e.

from 23andMe) from the web form to the server. (ii) Impute the

missing SNPs needed by the gene specific models using

the IMPUTE2 (Howie et al., 2011, 2009) software, and using the

1000 Genomes Project together with HapMap data as the genome

reference for imputation. (iii) Predict the expression of available

genes given the user’s SNPs (iv) Create a table that summarizes

the results and links out to various resources regarding the predicted

genes (Supplementary Figs. S5–S7).
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