
Host genetics and microbiome associations through the
lens of genome wide association studies
Omer Weissbrod1,2, Daphna Rothschild1,2, Elad Barkan1,2 and
Eran Segal1,2

Available online at www.sciencedirect.com

ScienceDirect
Recent studies indicate that the gut microbiome is partially

heritable, motivating the need to investigate microbiome–host

genome associations via microbial genome-wide association

studies (mGWAS). Existing mGWAS demonstrate that

microbiome–host genotype associations are typically weak

and are spread across multiple variants, similar to associations

often observed in genome-wide association studies (GWAS) of

complex traits. Here we reconsider mGWAS by viewing them

through the lens of GWAS, and demonstrate that there are

striking similarities between the challenges and pitfalls faced by

the two study designs. We further advocate the mGWAS

community to adopt three key lessons learned over the history

of GWAS: firstly, adopting uniform data and reporting formats

to facilitate replication and meta-analysis efforts; secondly,

enforcing stringent statistical criteria to reduce the number of

false positive findings; and thirdly, considering the microbiome

and the host genome as distinct entities, rather than studying

different taxa and single nucleotide polymorphism (SNPs)

separately. Finally, we anticipate that mGWAS sample sizes will

have to increase by orders of magnitude to reproducibly

associate the host genome with the gut microbiome.
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Introduction
In recent years the importance of the gut microbiome in

human metabolism and health is increasingly gaining

recognition [1–7,8��,9,10,11�,12]. Recent studies have

associated the microbiome with various health parameters

including obesity, diabetes mellitus, cancer, and
www.sciencedirect.com 
inflammatory, metabolic and neurodegenerative disor-

ders [13–17].

A fundamental question is how strongly the microbiome

is genetically inherited as opposed to being shaped by the

environment. The microbiome evolves during childhood,

and then becomes relatively stable and robust to pertur-

bations [18–20]. This apparent host-adaptation evokes

the classic question of ‘nature versus nurture’: Does the

microbiome adapt to its host due to shared early environ-

mental exposure, or are certain microbiome compositions

inherently more suitable to specific host genomes?

The recent advent of 16S rRNA gene sequencing and

metagenomic sequencing technologies enable carrying

out gut microbiome studies with thousands of individuals

[21]. Recent studies employing these technologies have

uncovered evidence for both environmental and host

genetic association with the microbiome composition

[8��,11�,20,22–27,28��,29��,30��,31��,32,33�,34�,35�,36�,
37�,38�]. However, to date there is no consensus regard-

ing how and to what extent host genetics shape the gut

microbiome, as compared to environmental factors.

In this article, we first review recent studies of environ-

ment and host genome associations with the human gut

microbiome. We show that existing evidence suggests

that the gut microbiome is predominantly shaped by

environmental factors, and that host genotype–micro-

biome associations are weak, spread across multiple sites

across the host genome, and together explain a relatively

small fraction of the microbiome configuration of individ-

uals. We then draw parallels between existing mGWAS

and early GWAS, and use these to demonstrate how some

of the pitfalls encountered in early GWAS, and their

respective solutions, could be applied to mGWAS.

A short history of mGWAS
The microbiome is predominantly shaped by

non-genetic factors

Recent studies have provided strong evidence that envi-

ronmental factors play a much greater role than host

genetics in shaping the gut microbiome. It can be difficult

to tease apart environmental from genetic inheritance in

humans, since children typically live with their parents.

However, twin studies can tease these factors apart by

comparing microbiome similarity among monozygotic

(MZ) and dizygotic (DZ) twins, under the assumption
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that significant differences in the degree of similarity are

attributed solely to genetic effects. A recent large scale

study of 416 twin pairs demonstrated that while several

bacterial taxa are significantly heritable, the overall

degree of similarity between MZ and DZ twins is only

borderline significant (P = 0.032 under an unweighted

UniFrac dissimilarity, P > 0.05 under Bray-Curtis and

weighted UniFrac dissimilarity) [24]. In contrast, the

same study showed that both MZ and DZ twins have

significantly similar gut microbiomes compared with non-

twin pairs (P < 0.009 under all similarity measures) [24].

A subsequent study showed that this similarity decreases

when twins start living apart [33�]. These results indicate

that environment overshadows host genetics in shaping

the gut microbiome.

Recent non-twin studies provide additional support for

the dominant role of environment in shaping the gut

microbiome. First, there is an excessive bacterial similar-

ity among individuals sharing a household, but no such

similarity was observed across family members without a

history of household sharing [8��,20,22,36�]. Second, over

20% of the variability of gut microbiome b-diversity (a

measure of microbiome dissimilarity between pairs of

individuals) can be inferred via several measured envi-

ronmental factors, such as answers to food frequency and

drug use questionnaires [8��,34�,35�], whereas no statisti-

cally significant result was obtained when applying a

similar methodology to genetic variants [8��]. Third,

several environmental factors have been robustly associ-

ated with both gut microbiome b-diversity and with

individual taxa across multiple studies [34�,35�]. These

results further demonstrate that the gut microbiome is

predominantly shaped by environmental factors.

Twin studies identify significantly heritable gut

microbiome taxa

Despite the strong role of non-genetic factors in shaping

the gut microbiome, recent twin studies identified 33 sig-

nificantly heritable bacterial taxa (most notably the family

Christensenellaceae [37�]). The estimated heritability of

these taxa was typically 10–30%, which is substantially

lower than several well-known human complex traits,

such as height, body mass index (BMI), and even educa-

tion attainment [39]. A recent re-analysis of the largest

reported twin study to date (2252 twins) found that the

average heritability of gut bacterial taxa likely lies

between 1.9% and 8.1% [8��]. Taken together, these

results indicate that while there are several genetically

heritable bacterial taxa, the overall gut microbiome heri-

tability is relatively small.

Limited evidence for gut microbiome–host genotype

associations from non-twins data

A potential shortcoming of twin studies is the difficulty of

assembling large cohorts. Genotyping of unrelated indi-

viduals with a relatively common environment facilitates
Current Opinion in Microbiology 2018, 44:9–19 
the assembly of much larger cohorts. These cohorts

enable directly associating the gut microbiome with the

host genotype, by searching for a greater co-presence of

bacterial taxa among genetically closer individuals. How-

ever, the results from such studies have been inconclusive

and mostly failed to replicate.

One of the first studies to employ the above approach

identified a significant correlation between the top micro-

biome principal coordinate and top host-genome princi-

pal component (PC), based on human DNA residues

extracted from stool samples [27]. An analysis of 127 Hut-

terites reported several heritable taxa [40], but the statis-

tical significance of these results after multiple testing

correction has not been reported. Additionally, several

recent studies have identified a significant heritability of

bacterial a-diversity (a measure of diversity of a bacterial

community) [28��,30��,40]. In contrast, a recent analysis

of 1046 Israeli individuals from different ancestral origins

but a relatively shared environment did not replicate any

of the above results, and did not identify statistically

significant host-genomics associations with either the

overall microbiome composition or individual taxa

[8��]. Another recent study identified significant co-occur-

rence of bacterial taxa among 270 family members [28��],
and several other studies identified a significantly differ-

ent microbiome composition between individuals from

different populations [20,32,41]. However, the interpre-

tation of these results is unclear because unlike twin

studies, it is not possible to tease apart the roles of

genetics and environment in such studies [42]. Overall,

these inconclusive results again suggest that the heritable

component of the gut microbiome is small.

Limited power of microbiome genome wide association

studies

Microbiome association studies attempt to not only iden-

tify heritable taxa, but also to pinpoint the host genetic

variants that underlie this heritability [11�,37�,38�]. The

first such studies in humans focused on specific genes and

pathways, and have identified several significant micro-

biome-associated variants [43–47]. However, a potential

shortcoming of the above studies is that they require

previous knowledge of associated genes, and thus cannot

discover new associations. Thus, recent studies have

performed unbiased microbiome-genome wide associa-

tion studies (mGWAS) spanning 93–1812 individuals

[8��,27,28��,29��,30��,31��,32].

A substantial difficulty of mGWAS is the large number of

tested hypotheses, which is equal to the number of genetic

variants multiplied by the number of tested taxa, genes and

pathways. This leads to a severe multiple testing correction

and to reduced power (Figure 1). Consequently, most

mGWAS findings are not statistically significant after multi-

ple testing correction. A recent analysis demonstrated that

there is almost no overlap between the loci reported in
www.sciencedirect.com
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Figure 1
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Plot of the fraction of variance a tested SNP needs to explain in order

to be identified with 80% power, as a function of the number of tested

hypotheses, for various sample sizes (based on standard derivations

[54�]). Increasing the number of hypotheses leads to reduced power to

identify variants with small effect sizes, due to the severe multiple

testing correction. Variants previously implicated in GWAS often

explain less than 0.1% of the trait variance [54�]. The fraction of

variance a SNP needs to explain to be identified with 80% power in

the presence of 106 hypotheses is 3.8% for N = 1000, 1.9% for

N = 2000, 0.9% for N = 5000, 0.5% for N = 10 000, and 0.1% for

N = 100,000.
different studies,even when allowingSNPs up to1 Mbapart

and associations with different bacterial taxa to be consid-

ered as overlapping [8��]. This lack of consistency could

originate either from differences in the underlying analysis

methodsor fromlackof reproducibility,necessitatingfurther

investigation of the reported associations. The only genetic

variants consistently shown to be microbiome-associated  in

multiple mGWAS are located in close proximity to the LCT

gene, which is associated with lactase persistence

[8��,27,30��,31��,32,48]. However, while important, this

association may be confounded by lactose consumption [48].

Several recent studies alleviated the multiple testing

burden by testing for association with the entire micro-

biome composition rather than individual taxa, and iden-

tified genetic variants located in the vitamin D receptor

gene and in several genes associated with health disorders

[8��,29��,30��,32]. A recent study further argued that a

small number of genetic variants can infer over 10% of the

microbiome b-diversity composition [29��]. However, the

results of one study could not be replicated in others, with

the exception of LCT related variants [8��].

Other than the LCT variants, the most consistently reported

host–microbiome associations involve immunity-related
www.sciencedirect.com 
variants, although no two studies reported an association

with the same variant (see ref. [38�] and references therein

for a comprehensive review). It has also been observed that

manymGWAShitsarefoundnearhostgenesassociatedwith

complex diseases [24,27,28��,29��,31��,40,43,49–52], and

that multiple studies have implicated variants residing in

the same genes, though the exact loci differed between

studies [11�,37�,43].

The above results demonstrate that certain bacterial taxa

are clearly heritable, but that the variants underpinning

this heritability have not been reliably identified. This

contradiction suggests that the heritability of bacterial

taxa arises due to the aggregated effects of multiple

genetic variants, each having an individually weak effect

that cannot be reliably identified with existing sample

sizes. This property has long been recognized as being

common to most complex human traits, and has been

extensively studied in GWAS, as elaborated below.

A short history of GWAS
It is beneficial to reflect on the current state of mGWAS by

drawing parallels with the history of GWAS [53,54�,55].
The key idea behind GWAS is to associate genetic variants

with traits of interest using large cohorts of unrelated

individuals. Since 2005, over 3,200 GWAS with unique

PubMed IDs have been reported in the GWAS Catalog

[56], compared with seven published mGWAS

[8��,27,28��,29��,30��,31��,32]. The initial motivation for

GWAS arose due to the observation that common traits,

such as height or BMI, are associated with a large number of

genetic variants with small effect sizes, thus requiring large

cohorts to be identified reliably [53]. The small effect sizes

reported in existing mGWAS suggests that the same pat-

tern holds for host genome–microbiome associations.

The very first GWAS, which became possible thanks to

the advent of low cost genotyping arrays, were met with

high hopes. However, it soon became apparent that most

reported associations failed to replicate [57]. The GWAS

community consequently took actions to encourage

reproducibility [58], chief among which was the adoption

of stringent requirements for reporting associations. The

same process seems to occur in current mGWAS, which

also became possible due to the declining costs of the

required technologies, and whose reported associations

typically fail to replicate. Unfortunately, the number of

hypotheses tested in a typical mGWAS is orders of

magnitude larger than in a typical GWAS, suggesting

that even more stringent statistical criteria need to be

enforced.

A second important development in the history of GWAS

was the adoption of common data formats, data processing

techniques, analysis workflows and reporting guidelines

[59]. These developments helped streamline, reduce the

technical burden, and facilitate replication efforts in
Current Opinion in Microbiology 2018, 44:9–19
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Figure 2
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A bar chart depicting the largest GWAS performed up to every year

between 2005–2017, as reported in the GWAS catalog [56]. GWAS

sizes increased by almost 500-fold over 12 years.
GWAS. Notably, the adoption of the common plink

format [60] helped method developers to release software

that could be used across different research groups in a

unified manner. Future mGWAS would greatly benefit

from such a standardization effort, as existing mGWAS

were carried out using vastly different statistical methods,

which hinders replication efforts.

As more and more GWASs were being published, several

common threads began to emerge. First, it became appar-

ent that virtually all common traits are extremely poly-

genic, to the degree that most studied traits have to date

been associated with dozens or hundreds of genetic

variants with small effect sizes [56]. Second, most associ-

ated loci do not reside within coding regions, and there is

often an excellent correlation between the number of

associations on a chromosome and the chromosome

length [61], suggesting that associated variants are spread

uniformly throughout the genome. Third, pleiotropy was

found to be extremely common, as a great number of loci

were independently implicated with multiple traits.

These observations suggested that the genetic architec-

ture of common traits was far more complicated than

initially thought, with some researchers hypothesizing

that almost all genetic variants are associated with every

trait [62��]. As the gut microbiome can be seen as a highly

complex organism [63], we believe that it is quite likely

for the same patterns to emerge in mGWAS.

In response to the perceived complexity of common traits,

GWAS gradually became larger and larger. While typical

GWAS in 2007 spanned 3,000 individuals, many GWAS

today are two orders of magnitude larger (Figure 2), with

the recently released UK Biobank spanning approximately

500 000 individuals [64], and with plans underway to geno-

type 1,000,00 individuals for the Million Veteran Program

[65]. These developments suggest that mGWAS sample

sizes will similarly have to increase by at least two orders of

magnitude to uncover the underlying biology behind gut

microbiome and host genome interactions. In recent years

many GWAS began releasing publicly available summary

statistics of variant-trait associations, which enable com-

bining results across multiple studies without the logistic

and legal complications required to access private genetic

data [66].

One class of GWAS that bears similarities to mGWAS are

quantitative trait loci (QTL) studies. Such studies investi-

gate the genetic determinants of molecular phenotypes

such as gene expression [67] and DNA methylation [68].

QTL studies face several challenges similar to those of

mGWAS: they investigate tens or hundreds of thousands of

phenotypes, are relatively small compared to standard

GWAS, and are often confounded by technical artifacts

[69,70]. However, QTL studies often circumvent power

limitations by only testing variants in close proximity to the

molecular phenotype (cis associations) rather than across
Current Opinion in Microbiology 2018, 44:9–19 
the entire genome (trans associations). To date, only a few

trans-QTL studies have been published [71–78], and there

was little overlap between the results reported in different

studies [76]. Unfortunately, the strategy of testing only for

cis associations cannot be carried over to mGWAS, because

there is no analogue for ‘cis’ and ‘trans’ in host genetics-

microbiome associations.

Applying the lessons of GWAS to mGWAS
As discussed above, two important developments in the

history of GWAS were the enforcement of stringent

statistical criteria for reporting associations, and the adop-

tion of common data formats and analysis workflows. We

strongly advocate that the mGWAS community adopt

these practices to facilitate replication efforts.

Several approaches to increase power could also be car-

ried from GWAS to mGWAS. First, publicly available

summary association statistics will facilitate the aggrega-

tion of results across studies [66]. Second, power may be

increased by oversampling of individuals with extreme

microbiome-associated phenotypes, such as obesity

[79,80]. Third, restricting the analysis to significantly

heritable taxa can substantially increase power by

decreasing the number of hypotheses. Finally, explicit
www.sciencedirect.com
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modeling of gene–environment interactions can increase

power if environmental factors and variants have a non-

additive effect on the abundance of bacterial taxa [81–85].

Approaches to increase power in trans-QTL studies are

also likely to be beneficial to mGWAS, because the two

study designs face similar challenges. Several recent

papers proposed increasing power in trans-QTL studies

by finding a small set of latent variables that can approxi-

mately represent all the molecular phenotypes in the

data, and then testing for association with these latent

variables [86–88]. This reduced representation can help

reduce the number of tested hypotheses and to account

for hidden confounding factors. A recent paper proposed

increasing power by searching for variants associated with

multiple molecular phenotypes [89]. A similar strategy

can also be employed in mGWAS, by finding variants

associated with microbiome dissimilarity instead of indi-

vidual taxa, as discussed below.

Despite their similarities, there are some aspects of

mGWAS with no analogue in standard GWAS. These

include the multiple taxonomic levels that can be inves-

tigated, the possibility to investigate the functional com-

position of the microbiome (i.e. bacterial genes) rather

than its taxonomic composition, and statistical modeling

of zero-inflation. Previous mGWAS handled these aspects

in different ways [8��,27,28��,29��,30��,31��,32], but a

systematic comparison of the various approaches is still

lacking.

Global versus local approaches
A common strategy often employed in GWAS to address

power limitations is phrasing of new research questions,

which treat the genome in a global manner rather than a

local one. Instead of trying to find genetic associations

with tiny effects, many recent studies investigate the

genetic architecture of common traits as a distinct entity.

Such global approaches have arguably provided more

insights into the underlying biology of common traits

than direct genetic associations. Below, we provide a brief

overview of global approaches in GWAS, and then explain

how such approaches can be carried over to mGWAS.

Global approaches in GWAS

Global approaches in GWAS typically use polygenic

models, which assume that all genetic variants exert a

causal effect on the phenotype [90,91]. This line of

research arguably began with the seminal heritability

estimation study of Yang et al., which quantified the

overall association between all genotyped genetic variants

and height in a cohort of 3,925 individuals [92]. The

underlying idea is that individuals who are more geneti-

cally similar are likely to have more similar phenotypes.

Heritability estimation provided the first principled dem-

onstration that virtually all complex traits are highly

polygenic.
www.sciencedirect.com 
Recent studies extended heritability estimation to inves-

tigate the polygenic contribution to heritability originat-

ing from different functional annotations, such as coding

or conserved variants [93–97]. Such studies can provide

valuable insights into the genetic architecture of diseases

and traits. For example, a recent study demonstrated that

variants expressed in the central nervous system contrib-

ute disproportionately to the heritability of smoking

behavior, thus providing evidence that nicotine proces-

sing is a heritable trait [93].

Another extension of heritability is genetic correlation,

which quantifies genetic similarity between pairs of traits

[98–100]. A large genetic correlation indicates a shared

biological mechanism for two traits. Recent genetic cor-

relation studies have uncovered surprising biological

similarities between seemingly unrelated diseases, such

as a positive genetic correlation between anorexia nervosa

and schizophrenia [98].

Finally, another global GWAS approach is construction of

polygenic risk scores (PRS) [101–103]. PRS enable rank-

ing individuals according to their predisposition to a

certain disease, which can be used for early screening

of individuals at high risk. In recent years PRS have also

been used for finding unexpected genetic correlations.

For example, a recent study demonstrated that PRS of

schizophrenia and of bipolar disorder can predict creativ-

ity [104].

Global approaches in mGWAS

We encourage mGWAS to adopt global approaches,

which treat the microbiome and the host genome as

distinct entities, rather than local approaches which con-

sider them as a collection of taxa and of variants (Figure 3

and Table 1). As discussed above, global approaches

arguably led to a greater understanding of genetic dis-

eases and traits than analysis of individual variants, and

we expect that similar trends can hold for mGWAS.

Global approaches are arguably more suitable for micro-

biome analysis because they can capture complex dynam-

ics involving several taxa, in line with the view of the

microbiome as a complex organism. In addition, global

approaches can be more powerful because they involve

fewer tested hypotheses, leading to a less severe multiple

testing correction, and because they aggregate multiple

effects that may individually be too weak to be noticed.

Finally, global approaches can jointly investigate the

dynamics of the microbiome, the host genome, and

additional factors, such as dietary habits.

To date, global association tests have been employed in

mGWAS in a limited manner. One study tested if geneti-

cally similar individuals have similar abundances of an

investigated taxon [40]. Several studies tested if individ-

uals with similar microbiomes share similar alleles at one

or several investigated variants, or if they share similar top
Current Opinion in Microbiology 2018, 44:9–19
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Figure 3
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A demonstration of various types of mGWAS association tests. The top row shows matrices of genotypes (left) and of taxa abundances (right) for

six individuals. The middle row shows the corresponding matrices of genetic similarity (left) and microbiome similarity (right). The bottom row

shows a phenotype. The arrows represent types of tests; the text above each arrow states whether the test is global with respect to host genetics

(first word) and to the microbiome (second word). Local genetic tests examine if a specific variant (a column of the genotypes matrix) is

associated with some other factor, whereas global genetic tests examine if individuals who are genetically similar share some other property.

Similarly, local microbiome tests examine if a specific taxon (a column of the microbiome matrix) is associated with some other factor, whereas

global microbiome tests examine if individuals with similar microbiomes share some other property. There are two types of global–global tests:

The first (top global–global arrow) tests if individuals who are genetically similar have similar micorbiomes; the second (bottom global–global arrow)

tests if individuals with similar genomes and/or similar microbiomes are likely to share similar phenotypes. The genotypes matrix includes only

three colors, corresponding to the number of SNP minor alleles that can be carried by an individual.
genetic PCs [8��,27,29��,30��,32]. Finally, several studies

asked if genetically similar individuals have a similar

microbiome diversity [8��,28��,30��,32,40] or similar

microbiomes [8��]. However, existing mGWAS are still

likely underpowered for such approaches due to limited

sample sizes.

We expect global mGWAS analyses to be useful mainly

for improved understanding of biological mechanisms

involving both host genetics and the microbiome, such

as fasting glucose levels, rather than identification of

specific variant-taxa associations. This is in line with

global GWAS analyses, which provide insights about
Current Opinion in Microbiology 2018, 44:9–19 
the genetic architecture of traits rather than pinpointing

specific associations. One example of a global analysis in

mGWAS is the recently proposed microbiome-association

index, which quantifies the association of a host pheno-

type with the entire genomes of the microbiome and of

the host in a single analysis [8��]. We anticipate that this

approach could be extended and applied in different

study designs, such as microbiome–metabolome associa-

tion studies [105].

Despite their appeal, global approaches are no panacea.

The main limitation of global association tests is reduced

interpretability and actionability, compared to local
www.sciencedirect.com



Host genetics and microbiome associations from the lens of GWAS Weissbrod et al. 15

Table 1

Overview of global and local analyses. Shown are common types of local and global analyses of the microbiome and of the host genome.

Also shown is the approximate number of tests required for every type of analysis, under the assumption that there are one million host

genetic variants and several hundred taxa

Microbiome

Local Global

Host genome Local SNP-taxon association test:

Associating a specific host SNP with a specific

bacterial taxon.

Requires hundreds of millions of tests

SNP-microbiome association tests: Associating a specific host

SNP with microbiome b-diversity.

Requires one million tests

Global Taxon heritability test: Estimating the fraction of

variance of the abundance of a specific taxon

inferred by the host genome Requires hundreds

of tests

Microbiome–host association tests

Measuring the correspondence between host-genome similarity

and microbiome b-diversity (e.g. via a Mantel test);

Microbiome-association index: Measuring the fraction of

variance of a host phenotype that can be jointly inferred by the gut

microbiome and host genome contents

Requires a single test
associations. Specifically, it may be difficult to gain bio-

logical insights from an association that involves the

entire microbiome. The clinical utility of such an associa-

tion may also be limited. However, these limitations may

be an inherent biological property rather than a statistical

limitation. Since the microbiome consists of multiple co-

interacting taxa, there may simply not exist an individual

taxon that can be acted upon for clinical applications. As

an analogue, associations identified in disease GWAS are

typically not directly actionable due to the complex

genetic architecture of complex diseases. Despite these

shortcomings, we believe that global microbiome associa-

tions are valuable for two reasons: such associations can

shed light on the genetic architecture of microbiome-

genetic associations; and the microbiome composition can

be manipulated, which allows acting upon a global asso-

ciation by replacing the entire microbiome composition of

an individual, without having to implicate individual taxa.

Global approaches in statistical genetics are often carried

out using linear mixed models [92,106–108], whereas in

statistical ecology they are typically performed via ordi-

nation methods [109], Mantel tests [109] or multivariate

analysis of variance [110]. To date, relatively little work

has been done on combining these two frameworks

together. Notable examples include MiRKAT [111]

and microbiome-association index estimation [8��]. Both

methods test for microbiome association with a pheno-

type via a linear mixed model, whose covariance matrix is

induced from a b-diversity dissimilarity measure. We

believe that this emerging field is a fertile ground for

future developments.

Concluding remarks
The first mGWAS made many interesting discoveries,

but have largely raised interesting questions rather than

providing conclusive findings. It is our view that mGWAS

would greatly benefit from adopting the lessons learned
www.sciencedirect.com 
by the GWAS community over the last several years. We

specifically advocate adopting stringent statistical criteria,

standard data formats, and a holistic approach towards

studying microbiome and host genome interactions. Such

approaches will require the development of new statisti-

cal methods, that will likely combine state of the art

techniques from statistical genetics and statistical ecol-

ogy. We anticipate that the combination of such

approaches, along with larger sample sizes and with the

integration of an increasing number of lifestyle and diet

related factors, will lead to exciting new discoveries.

Conflict of interest
None.

Acknowledgements
We thank the Segal group members for fruitful discussions. E.S. is
supported by the Crown Human Genome Center; the Else Kroener
Fresenius Foundation; Donald L. Schwarz, Sherman Oaks, CA; Jack N.
Halpern, New York, NY; Leesa Steinberg, Canada; and grants funded by
the European Research Council and the Israel Science Foundation. D.R.
received a Levi Eshkol PhD Scholarship for Personalized Medicine by the
Israeli Ministry of Science.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as

� of special interest
�� of outstanding interest

1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER,
Gordon JI: An obesity-associated gut microbiome with
increased capacity for energy harvest. Nature 2006, 444:1027-
1131.

2. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB,
Sartor RB, Finlay BB, Littman DR: Specific microbiota direct the
differentiation of IL-17-producing T-helper cells in the mucosa
of the small intestine. Cell Host Microbe 2008, 4:337-349.

3. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL,
Griffin NW, Lombard V, Henrissat B, Bain JR et al.: Gut microbiota
from twins discordant for obesity modulate metabolism in
mice. Science 2013, 341:1241214.
Current Opinion in Microbiology 2018, 44:9–19

http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0005
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0005
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0005
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0005
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0010
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0010
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0010
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0010
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0015
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0015
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0015
http://refhub.elsevier.com/S1369-5274(18)30007-9/sbref0015


16 Microbiotia
4. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT,
Britt EB, Fu X, Wu Y, Li L et al.: Intestinal microbiota metabolism
of L-carnitine, a nutrient in red meat, promotes
atherosclerosis. Nat Med 2013, 19:576-585.

5. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A,
Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M et al.:
Personalized nutrition by prediction of glycemic responses.
Cell 2015, 163:1079-1094.

6. Hand TW, Vujkovic-Cvijin I, Ridaura VK, Belkaid Y: Linking the
microbiota, chronic disease, and the immune system. Trends
Endocrinol Metab 2016, 27:831-843.

7. Budden KF, Gellatly SL, Wood DLA, Cooper MA, Morrison M,
Hugenholtz P, Hansbro PM: Emerging pathogenic links
between microbiota and the gut–lung axis. Nat Rev Microbiol
2016, 15:55-63.

8.
��

Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T,
Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N et al.:
Environment dominates over host genetics in shaping human
gut microbiota. Nature 2018.

This study assembled a cohort of 1046 individuals with several distinct
ancestries and a relatively common environment, and did not find sig-
nificant associations between genetic ancestry or individual host SNPs
and between gut microbiome composition or individual taxa. The study
additionally demonstrated that household sharing and several environ-
mental factors can infer a large fraction of the variance of microbiome
b-diversity, whereas genetic variants cannot significantly infer this quan-
tity. Finally, the authors proposed a measure called microbiome-associa-
tion index for quantifying the association between the gut microbiome
and a host phenotype after accounting for host genetics, and demon-
strated that the gut microbiome can infer 22–36% of the variance of
several anthropometric and metabolic related traits.

9. Zmora N, Zeevi D, Korem T, Segal E, Elinav E: Taking it
personally: personalized utilization of the human microbiome
in health and disease. Cell Host Microbe 2016, 19:12-20.

10. Honda K, Littman DR: The microbiota in adaptive immune
homeostasis and disease. Nature 2016, 535:75-84.

11.
�

Hall AB, Tolonen AC, Xavier RJ: Human genetic variation and the
gut microbiome in disease. Nat Rev Genet 2017, 18:690-699.

A review of studies implicating host genetic variants with microbiome
dysbiosis, which can increase risk for certain types of diseases.

12. Gao R, Gao Z, Huang L, Qin H: Gut microbiota and colorectal
cancer. Eur J Clin Microbiol Infect Dis 2017, 36:757-769.

13. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI: Human
nutrition, the gut microbiome and the immune system. Nature
2011, 474:327-336.

14. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A,
Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP et al.: A core gut
microbiome in obese and lean twins. Nature 2009, 457:480-484.

15. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y,
Shen D et al.: A metagenome-wide association study of gut
microbiota in type 2 diabetes. Nature 2012, 490:55-60.

16. Clemente JC, Ursell LK, Parfrey LW, Knight R: The impact of the
gut microbiota on human health: an integrative view. Cell 2012,
148:1258-1270.

17. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G,
Almeida M, Arumugam M, Batto J-M, Kennedy S et al.: Richness
of human gut microbiome correlates with metabolic markers.
Nature 2013, 500:541-546.

18. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML,
Young VB: Reproducible community dynamics of the
gastrointestinal microbiota following antibiotic perturbation.
Infect Immun 2009, 77:2367-2375.

19. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A,
Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N et al.: Moving
pictures of the human microbiome. Genome Biol 2011, 12:R50.

20. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-
Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN,
Anokhin AP et al.: Human gut microbiome viewed across age
and geography. Nature 2012, 486:222.
Current Opinion in Microbiology 2018, 44:9–19 
21. Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA,
Caporaso JG, Knight R, Ley RE: Conducting a microbiome
study. Cell 2014, 158:250-262.

22. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G,
Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S
et al.: Cohabiting family members share microbiota with one
another and with their dogs. eLife 2013, 2:e00458.

23. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE,
Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA et al.: Diet
rapidly and reproducibly alters the human gut microbiome.
Nature 2013, 505:559-563.

24. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O,
Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT et al.:
Human genetics shape the gut microbiome. Cell 2014, 159:789-
799.
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