
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 12, Number 7, 2005
© Mary Ann Liebert, Inc.
Pp. 909–927

Probabilistic Discovery of Overlapping Cellular
Processes and Their Regulation

ALEXIS BATTLE,1 ERAN SEGAL,2 and DAPHNE KOLLER1

ABSTRACT

In this paper, we explore modeling overlapping biological processes. We discuss a proba-
bilistic model of overlapping biological processes, gene membership in those processes, and
an addition to that model that identifies regulatory mechanisms controlling process acti-
vation. A key feature of our approach is that we allow genes to participate in multiple
processes, thus providing a more biologically plausible model for the process of gene reg-
ulation. We present algorithms to learn each model automatically from data, using only
genomewide measurements of gene expression as input. We compare our results to those
obtained by other approaches and show that significant benefits can be gained by model-
ing both the organization of genes into overlapping cellular processes and the regulatory
programs of these processes. Moreover, our method successfully grouped genes known to
function together, recovered many regulatory relationships that are known in the literature,
and suggested novel hypotheses regarding the regulatory role of previously uncharacterized
proteins.

Key words: cellular processes, gene regulation, probabilistic relational models

1. INTRODUCTION

Aliving cell is a complex system that needs to perform various functions and adapt to changing
environments. Essential to the cell’s ability to respond to different circumstances is its organization

into a set of processes, whose activity varies according to circumstance. The activation of these processes
is often controlled by a variety of regulatory signals, which are themselves triggered by various aspects
of the current state. Genomewide measurements of mRNA expression level across multiple experimental
conditions provide us with a global picture of the cell’s activities and provide the potential for a high-level
understanding of its behavior.

The most common approach for analyzing gene expression is to cluster genes whose expression profile
is similar over a range of experimental conditions (Eisen et al., 1998; Cheng and Church, 2000). As the
clusters correspond to sets of genes that respond similarly in different circumstances, their member genes
are likely to share a common function. However, these approaches group genes into mutually exclusive

1Computer Science Department, Stanford University, Stanford, CA 94305-9010.
2Center for Studies in Physics in Biology, The Rockefellar University, New York, NY 10021.

909



910 BATTLE ET AL.

clusters, whereas the real biological system is much more intricate, with many genes playing multiple roles
in different circumstances.

To address this issue, other approaches (Segal et al., 2001; Tanay et al., 2002; Ihmels et al., 2002;
Lazzeroni and Owen, 1999; Alter et al., 2000) have been proposed for discovering processes, or overlapping
groups of genes, thereby providing a more realistic model for cellular activity. These approaches vary in
how the different processes combine to explain the expression data. Some (Tanay et al., 2002; Ihmels
et al., 2002) do not attempt to provide a single model of the entire expression matrix, but rather look only
for significant submatrices. In these approaches, a single gene expression measurement can be associated
with multiple processes, and there is no attempt to explain how the actual expression value arises from the
combination of the gene’s module assignments. In others (Segal et al., 2001), a gene’s module assignment
can vary from one context to another, but in each experiment, a gene belongs to precisely one module. This
type of model fails to capture situations where the same gene can play a role within multiple processes
simultaneously. Finally, some approaches (Lazzeroni and Owen, 1999; Alter et al., 2000) decompose
the gene expression matrix as a sum of overlapping “layers,” so that each expression value is a sum of
components associated with the different processes to which the gene belongs.

In this paper, we propose an approach that also assigns genes to multiple processes. In this framework,
which we call the overlapping process (OP) model, we assume that a process is active to different degrees
in different conditions. Specifically, each process p has some activity level a.Cp in each given array a.
The expression level of a gene in an array a is a sum of the activities of the processes with which it is
associated. Thus, like SVD (Alter et al., 2000) and the Plaid approach (Lazzeroni and Owen, 1999), the OP
model decomposes the expression matrix as a sum of layers. However, our definition of processes differs
significantly, in that we incorporate an explicit bias against having genes that participate in a large number
of processes. This assumption is a better fit with current biological understanding, and the resulting learned
models contain processes that are biologically more coherent. (See Section 2 for further discussion.)

However, finding the genes that participate in each process provides only a partial view of the biological
system. In many cases, we are also interested in discovering the regulatory mechanism that controls the
activation of each process and its response to different circumstances. This type of analysis is typically
done as a postprocessing step, by searching, for example, for common cis-regulatory motifs in the promoter
region of the genes in the process (Wingender et al., 2001), or (more recently) for correlation with protein–
DNA binding data (Lee et al., 2002). However, such approaches are limited both by the amount of noise
in these data, and, more importantly, by the fact that many regulatory relationships are context specific,
occurring only under certain conditions, a phenomenon which does not manifest in these data.

Recent work (Pe’er et al., 2001; Segal et al., 2003b) shows that regulatory relationships can be learned
directly from gene expression data, in a way that accounts for the context-specificity of regulatory events.
Moreover, as shown by Segal et al. (2003b, 2003a), by searching for sets of co-regulated genes and their
actual regulatory program simultaneously, a much more accurate organization of genes into processes can
be obtained. However, while their approach models aspects relating to regulatory mechanisms, they partition
the genes into mutually exclusive processes, and thus their models are limited in the comprehensiveness
of the regulatory picture they provide.

We build on the work of Segal et al. (2003b), extending our basic model of overlapping processes to
incorporate rich models of gene regulation. Our overall framework, which we call the coregulated over-
lapping processes model, or COPR model (pronounced “copper”), explicitly models both the assignment
of genes to multiple overlapping processes and the regulatory program associated with each process. It
provides a unified probabilistic framework of gene regulation for multiple overlapping biological processes.

Our model makes the simplifying assumption that regulation is done at the level of processes, rather
than individual genes. Thus, we assume that each process is associated with some (unknown) regulatory
program, which determines its activity level a.Cp in each array a. Thus, the activity of p is different in
different arrays, but it is governed by the same set of rules. The process’s activity level is assumed to be
a function of its regulators. We use a regulatory program that captures two of the most important forms
of regulation: both the combinatorial (context-specific) nature of some types of gene regulation and the
dependence of the activity level of a process on the actual abundance of the regulatory protein (as indicated
by its mRNA level) in the cell.

We present an efficient algorithm for learning a COPR model automatically from data, using only the
raw gene expression measurements as input. In our learning task, we must associate genes with processes,



MODELING OVERLAPPING BIOLOGICAL PROCESSES 911

as well as learn the regulatory program of each process—both the set of regulators for each process and
the program itself. This learning problem is quite challenging, as both the (discrete) assignment of genes
to processes and the (continuous) activity levels of processes in arrays are all unobserved.

We evaluate our approach, examining both a model that includes reguatory programs and a model that
does not include regulation. We test our model on two expression datasets, including a large compendium
of 394 yeast microarrays compiled from four different studies. We evaluate its performance relative to a
variety of existing biological data sources, including known gene annotations (Ashburner, 2000), presence of
motifs in the gene’s promoter regions (Wingender et al., 2001), and correlation with protein–DNA binding
data (Lee et al., 2002). We show that (even without the regulatory model) our more biologically plausible
model of overlapping processes results in much “cleaner” and more biologically coherent processes than
previous approaches.

For our richer COPR model, we show that, relative to all of these biological data sources, our approach
discovers groups of genes that correspond to biologically coherent processes, significantly outperforming
the module network framework of Segal et al. (2003b). Notably, the regulatory models also lead to
significant improvements over the simple OP model, which does not include gene regulation. We also
evaluate the predicted activity levels for our learned processes and show that they are very consistent
with their role in the cell. Overall, our results support our basic assumptions, that overlapping processes
provide a better model of cellular activity than disjoint gene clusters and that by searching simultaneously
for co-regulated genes and for their regulatory programs, we converge to models that are biologically
more plausible.

2. RELATED WORK

As described above, our framework addresses two main goals: placing genes into functional groups and
discovering regulatory mechanisms for those gene groups. The first goal, grouping genes into meaningful
groups, is achieved by the simple OP model, and is shared by approaches such as clustering (e.g., Eisen
et al. [1998]). Standard clustering partitions genes into mutually exclusive groups, while our algorithm
places genes in multiple processes simultaneously.

Another approach to relaxing the assumption of mutually exclusive clusters is “soft clustering,” which
assigns probabilities that each member belongs to each one group. This type of model is more reflective
of uncertainty about the cluster assignment of a gene, rather than its assignment to multiple clusters
simultaneously. Other approaches, such as biclustering (Cheng and Church, 2000) or context-specific
clustering (Segal et al., 2001) allow genes to participate in different groups in different contexts, but in
any given array, a gene still belongs to exactly one group. In other words, each individual expression
measurement is explained by a gene’s membership in precisely one cluster. In the COPR model, a gene
can belong to multiple processes simultaneously, and a gene’s expression value in any condition is a sum
of the activity of all of the processes in which the gene participates.

Thus, our model decomposes the expression matrix as a sum of process activity matrices. This char-
acteristic makes COPR more similar to singular value decomposition (SVD) (Alter et al., 2000) or the
Plaid model of Lazzeroni and Owen (1999). These approaches also decompose the expression matrix as
a sum of activities of (overlapping) components or layers, which are roughly analogous to our processes.
However, our definition of processes differs significantly, in that we incorporate an explicit bias against
having genes that participate in a large number of processes. Thus, in our learned COPR models, each gene
tends to belong to at most two or three processes. By contrast, SVD or Plaid often produce models where
genes belong to a very large number of processes. As we show, the sparser models are more biologically
plausible and contain processes that are more biologically coherent.

Finally, and most notably, none of these approaches include a model of gene regulation. Including
gene regulation in our COPR model allows us both to discover regulatory relationships and to use these
discovered relationships to actually improve the grouping of genes. The COPR model presented in this
paper is based on the regulatory framework proposed in the module network framework (Segal et al.,
2003b), but extends it in two significant ways. First, it allows the use of overlapping processes, whereas
the module network framework assumes disjoint clusters. Second, it extends the notion of a regulatory
program to allow both combinatorial and linear dependence on the abundance of regulators.



912 BATTLE ET AL.

3. PROBABILISTIC MODEL

The COPR model is based on the language of probabilistic relational models (PRMs) (Koller and Pfeffer,
1998; Friedman et al., 1999; Segal et al., 2001), which represents the domain in terms of the different
biological entities that interact in it: genes, arrays, expression measurements, regulators, and biological
processes. Each object is also associated with a set of attributes that are relevant to its interactions with
the other entities.

3.1. Gene expression model

The first component of the COPR (and simpler OP) model represents the gene expression and its
decomposition into the activity level of processes. This component includes a set G of n gene objects,
G = {g1, . . . , gn}, a set A of k array objects, A = {a1, . . . , ak}, and a set E of expression objects
E = {e1,1, . . . , en,k}, one for each gene in each array. Each expression object e is associated with a gene
object e.Gene = g, an array object e.Array = a, and a real-valued attribute e.Level denoting the mRNA
expression level of e.Gene = g in e.Array = a.

As we discussed, a key property of our approach is that it allows genes to participate in multiple
processes. To this end, COPR explicitly includes a set of j processes; each gene object g is associated
with a set of binary process membership attributes g.M1, . . . , g.Mj , where g.Mp denotes whether g is a
member of process p. As processes may be active to various degrees in different arrays, we also define a
set of continuous activity level attributes a.C1, . . . , a.Cj for each array a, where a.Cp corresponds to the
degree to which process p is active in array a.

The expression level of gene g in array a is assumed to be a sum of g’s expression levels in each of
the processes in which it participates, where g’s expression level in process p is the activity of the process
a.Cp. More precisely, let g.M be the set of all g’s membership variables, and a.C be the set of all a’s
activity level variables. We assume that e.Level is normally distributed with mean that is equal to the sum,
over processes p in which which g participates, of the activity level of p:

P(e.Level | g.M, a.C) = N
⎛
⎝ j∑

p=1

g.Mp · a.Cp; σ 2
a

⎞
⎠ (1)

where σ 2
a is the variance associated with array a.

3.2. Regulatory model

In our OP model, the activity level of a process p is simply a stand-alone variable, with a distinct
value in each array. In our richer models, where we try to encode regulatory interactions, we assume that
the activity levels are themselves determined by some regulatory program. Specifically, we assume that
genes in the same process are co-regulated and therefore share the same regulatory mechanism. Thus,
we define a regulation program for each process, which is then shared across all genes assigned to that
process. To model regulation programs, we extend the framework of Segal et al. (2003b), where each
regulation program is defined in terms of some set of regulators and describes the expression of genes in
the process as a function of the mRNA expression level of these regulators. We therefore assume that the
model contains a set of t candidate regulators, where for each regulator r and each array a we have a
continuous attribute a.Rr that denotes the mRNA expression level of regulator Rr in array a. We define
a.R = a.R1, . . . , a.Rt .

We model the activity level of process p in the different arrays as a stochastic function of the expression
level of some small set of process regulators. The regulators are specified separately for each process,
allowing us to represent regulation programs that are specific to different processes. Thus, for each process
p, the COPR model specifies a set of d parent regulator attributes Rp = {Rp,1, . . . , Rp,d}, and the activity
level of process p in array a, a.Cp, is then described as a stochastic function of a.Rp,1, . . . , a.Rp,d .
In our framework, this stochastic function takes the form of a regression tree (Breiman et al., 1984).
A regression tree allows us to model two types of dependence on regulators: linear dependencies, which
are very common, and combinatorial regulation, which is crucial for any realistic model of gene regulation
in higher eukaryotes.



MODELING OVERLAPPING BIOLOGICAL PROCESSES 913

As illustrated in Fig. 1(a), a regression tree Sp for a process p with parents Rp, is a rooted binary tree
with interior tree nodes and leaf tree nodes. Each interior tree node is labeled with a test over one of the
parents, such as a.Rp,1 > .7. Each leaf node specifies a distribution over a.Cp. For a particular array a

in which we observe the expression levels of the regulators, we define P(a.Cp | a.Rp,1, . . . , a.Rp,d) by
traversing the tree from the root and taking the appropriate branch at each interior node: the right branch
if the values a.Rp,1, . . . , a.Rp,d pass the test at that node, and the left branch otherwise. We continue this
traversal until we reach a leaf node �. The distribution P(a.Cp | a.Rp,1, . . . , a.Rp,d) is then specified by
the distribution associated with �. The leaf distribution at each leaf � in is a linear Gaussian—a Gaus-
sian whose mean is a linear function of a subset of linear parents R� = {R�,1, . . . , R�,f�

} of the parent
regulators Rp. Thus, if array a reaches leaf � in the tree, it will have a Gaussian distribution N (µa; σ 2

� ),

where µa = b�,0 + ∑f�

i=1 b�,i · a.R�,i , b�,i is the weight of regulator i in the leaf distribution of leaf �,
and σ 2

� is the variance associated with the leaf. Thus, we represent the activity levels both by combina-
torial interactions of regulators and by a linear function of regulator expression levels. We note that this
regulation model is an extension of the model of Segal et al. (2003b), which incorporated only combi-
natorial regulation and did not allow linear dependence on the actual expression level of the regulators.

FIG. 1. (a) A sample regression tree predicting a different distribution over the activity level of a process, depending
on regulator levels. (b) COPR PRM with two processes and three regulators. (c) A simple instantiation of the COPR
PRM in (b) for two genes and two experiments.



914 BATTLE ET AL.

3.3. Model summary

Our overall COPR PRM model puts together these two components. The probability of the expression
levels E.Level given the gene process membership variables G.M and the process activity level A.C is as
described in our gene expression model. The probability of A.C given the regulators is as described in the
regulatory model. To complete the description of COPR, we define the gene membership attributes, g.M,
to have no parents; we simply associate with each process p a prior distribution over the membership of
genes in this process P(g.Mp) = qp. The regulator expression levels a.R1, . . . , a.Rt also have no parents.
We assign a Gaussian distribution N (µr ; σ 2

r ), noting that, as these regulator attributes are always observed,
this distribution will not play a role when we learn the model from data.

A simple example of COPR PRM for the case of two processes and three regulators is shown Fig. 1(a).
For any set of genes and arrays, the model defines a probability distribution over the gene process member-
ships, the array activity levels, and the expression levels of genes in the arrays. This probability distribution
is defined as a Bayesian network, whose structure and parameterization is determined by the model. An
example of the instantiation of the COPR model, for the case of two genes, two arrays, two processes, and
three regulators, is shown in Fig. 1(b). The joint distribution defined by our instantiation can be written in
terms of the objects, their attributes and the distributions specified above:

P(G.M, A.C, A.R, E.Level) =
j∏

p=1

∏
g∈G

P(g.Mp)

·
∏
a∈A

P(a.Cp | a.Ri1 , . . . , a.Rid )P (a.Ri1 , . . . , a.Rid )

·
∏
e∈E

P(e.Level | e.Gene.M, e.Array.C). (2)

In the OP model, we simply eliminate the terms P(a.Cp | a.Ri1 , . . . , a.Rid ) from the probabilistic
model. Note that, in principle, one could introduce a prior over the variable a.Cp, which could be learned
from data. We chose to simplify this model and fixed this prior distribution to be uniform.

In addition to modeling multifunctionality of genes and complex regulatory mechanisms, we can easily
obtain regulatory information directly from the COPR model: The regulators of each process p are specified
by the sets Rp, and the regression tree for process p tells us exactly how each regulator affects the activity
level of the genes participating in process p.

4. LEARNING

Learning a COPR model from microarray data alone is a complex task. Microarray data provides the
values for each e.Level variable and the values for each regulator expression variable a.Rp,i . All of the
assignments of genes to processes are hidden, as are all activity levels. In addition, we do not know which
regulators Rp control each process p, or by what program the regulators control their target processes.
The parameters qp, specifying the probability of a gene belonging to process p, must also be learned.
Thus, from expression data alone, the goal is to group genes into processes, to estimate process activity
levels for each experiment, and to learn the regulatory control programs governing the activity of each
process.

Overall, this problem can be viewed as one of learning a probabilistic model—structure as well as
parameters—from partially observed data. We address this problem using a hard-assignment variant of the
structural EM (SEM) algorithm of Friedman (1998). Like the EM algorithm of Dempster et al. (1977),
SEM iterates over two steps: In the E-step, it finds a “completion” of the values to the hidden variables
given a current model; in the M-step it re-estimates the model given our current “completion” of the data.
In SEM, the model structure as well as the parameters are both learned in the M-step.

We now describe each of the main steps of our algorithm and then describe how we put them together
in a single learning algorithm.



MODELING OVERLAPPING BIOLOGICAL PROCESSES 915

4.1. E-step

We first consider the problem of finding the most likely joint assignment to G.M and A.C. This task is
a hard one: As can be seen in Fig. 1(c), these variables are all correlated via their joint influence on the
expression levels. For example, consider two genes g and h; h’s assignment to processes influences our
estimates of the a.Cp variables, which in turn influence our membership probabilities for g. Due to these
dependencies, the exact computation of the E-step is intractable for large domains. The presence of a large
number of correlated hidden variables makes the inference task intractable for large models. The problem
is further complicated by the fact that it involves both discrete and continuous variables, a setting where
even very simple network structures are intractable (Lerner and Parr, 2001).

However, our model is such that if we were given the values of a.Cp for all a, p, then the assignments
of the different genes to processes are rendered independent. Likewise, given a fixed assignment of genes
to processes (g.Mp), the activity levels for each array a can be estimated from these assignments and from
the expression data in a alone, without knowing the activity levels in other arrays.

This key observation allows us to use a very effective form of local search algorithm in performing
the E-step. We decompose the E-step into two substeps: finding the most likely assignment of genes to
processes, given the process activity levels, and finding the most likely assignment of process activity
levels given gene assignments. The independence properties of the network make each of these subtasks
considerably easier.

Specifically, starting from an initial assignment of genes to processes (which could come from standard
clustering methods), we find the most likely activity levels A.C. We then fix these activity levels and find
the most likely assignment to G.M. Each step increases the joint likelihood P(G.M, A.C, E.Level) given
the current parameters, and thus the process is guaranteed to converge. The resulting assignment to these
variables is a fairly strong local maximum: No step that adapts only the gene memberships or the array
activity levels can improve the likelihood; however, a step that adapts both gene memberships and array
activities might.

4.1.1. Assigning genes to processes. The first of these two substeps—finding the assignment of genes
to processes—can be formulated as follows: given an assignment to A.C and a model M, optimize

argmaxG.MP(G.M | M)P (A.R | M)P (E.Level | G.M, A.C, M)P (A.C | A.R, M)

= argmaxG.MP(G.M | M)P (E.Level | G.M, A.C, M). (3)

Note that, as the activation levels are given, the presence of the regulatory model (if one is present) is
irrelevant.

A key observation is that, with all activity levels given, assignments of genes to processes are indepen-
dent across genes and we can find the most likely assignment for each gene separately. To perform this
computation, we thus maximize P(g.M | Eg, A.C) separately for each gene g, where Eg is the row in the
expression matrix corresponding to the gene g. More precisely, this computation can be done as follows:

v∗ = argmaxv′P(g.M = v′ | Eg, A.C), (4)

where

P(g.M = v | Eg, A.C) = α
∏
p

P (g.Mp = vp)
∏
e∈Eg

P (e.Level | g.M = v, A.C),

where vp ∈ {0, 1} and α is a normalization constant. The expression inside the final term in the product is
simply the Gaussian model for the expression level given its parents.

For models that include a large number of processes, we cannot perform this maximization over g.M
exactly. The number of calculations required for each gene is exponential in the number of processes,
since every possible joint assignment to g.M must be considered. In these cases, we use an approximation.
Instead of considering every possible assignment to g.M, we include only a subset g.MI of processes,
and exclude all others g.ME , forcing their value to 0. To select our subset, we relax the problem and
allow each g.Mp to be any real value between 0 and 1. We then maximize (4) subject to this relaxation.



916 BATTLE ET AL.

This problem reduces to a bounded least squares problem, which we can solve exactly (Bjorck, 1996). We
then select g.MI from g.M, by choosing those variables whose relaxed assignments are closest to 1 (in
practice the majority of the variables are assigned to 0 in the relaxed solution). Finally, we find the most
likely {0, 1} assignment to g.MI with all other variables fixed to 0 by maximizing

P(g.MI = v | Eg, A.C, g.ME = 0)

= α
∏
p∈I

P (g.Mp = vp)
∏
e∈Eg

P (e.Level | g.MI = v, g.ME = 0, A.C).

In our implementation, we experimentally selected the threshold for including a process p in g.MI . In
practice, we found that a large number of the continuous memberships were actually assigned to 0. Once
each gene has been assigned a candidate set of processes, the remaining discrete optimization problem is
then to be solved exactly using exhaustive enumeration.

4.1.2. Computing activity levels. In the second part of the E-step, we compute the most likely assign-
ment to the activity levels A.C with the regulatory program and gene memberships G.M fixed. Our goal
here is to maximize

argmaxA.CP(G.M | M)P (A.R | M)P (E.Level | G.M, A.C, M)P (A.C | A.R, M)

= argmaxA.CP(A.C | A.R, M)P (E.Level | G.M, A.C, M). (5)

For any array a and each process p, the regulator variables are all observed. Thus, we know precisely
which path is followed down the regression tree for p and the values of the linear parents at the correspond-
ing leaf. Thus, M and the values of the regulator variables define a Gaussian distribution N (µp,a; σ 2

p)

over the values of a.Cp. Given the gene process assignments, the variables a.Cp for different arrays a are
conditionally independent. Thus, for each a, we need to optimize

argmaxa.C

∑
e∈Ea

log

(
1√

2πσa

exp

(
(e.Level − µe)

2

2σ 2
a

))
+
(∑

p

log

(
1√

2πσp

exp

(
(a.Cp − µp,a)

2

2σ 2
p

)))

= argmina.C
1

2

∑
e∈Ea

(e.Level − µe)
2 + σ 2

a

2σ 2
p

∑
p

(a.Cp − µp,a)
2, (6)

where Ea are all of the expression measurements associated with the array a and for each e ∈ Ea , µe is the
mean of the Gaussian over the expression level, as specified in (1). Note that µe is a linear function of the
values a.Cp, whose coefficients are determined by the (known values of) g.Mp. The form of (6) allows
us to use a simple least squares computation to solve this minimization problem optimally and efficiently.
Note that, in the OP model, the second term in (6) disappears.

4.2. M-step

In the M-step, we are given a complete assignment to the hidden variables, and our task is to learn a
good model. In the case where we have no regulatory programs, this learning step is trivial: The only model
parameters are the variances σ 2

a of the expression measurements for array a and the probabilities qp which
encode the probability of gene membership in process p. These parameters are estimated using maximum
likelihood, based on the given hard assignments to the hidden variables. Specifically, the probability qp is
estimated as the fraction of genes assigned to process p in the current hard assignment, and the variances
σ 2

a associated with (1) are also assigned to be their empirical estimates.
In richer models, incorporating a regulatory program for processes, the learning task is much more

complex, involving both structure and a richer set of parameters. The structure S specifies the structure
Sp of the regression tree for each process p and the set of linear parents R� at each leaf � in the tree Sp.
The parameters specify the linear coefficients and the variances in the regression tree, the variances σ 2

a of
the expression measurements for array a, and the probability qp of gene membership to process p.



MODELING OVERLAPPING BIOLOGICAL PROCESSES 917

To select S, we use a Bayesian model selection approach, which explicitly accounts for our uncertainty
about the parameters using probability distributions over the values of θ . We then search for a model
that has high posterior probability given the expression data D, integrating over all possible values of θ :
P(S | D) ∝ P(S)P (D | S) = P(S)

∫
P(D | S, θS)dθS . We choose to use a structure prior P(S)that

penalizes the number of regulators in each regulatory program. Specifically, our prior shrinks exponentially
with the number of distinct regulators. Our Bayesian score is simply the logarithm of this posterior
probability.

We search for a set of regression trees Sp that maximize this posterior probability, given a hard as-
signment to the hidden variables. Given a fixed assignment to A.C, the optimization task for each process
p is independent and depends only on the activity levels of p in each array, Array.Cp. Thus, our task
for process p reduces to one of finding the regression tree that optimizes the Bayesian score, given the
data A.Cp.

To find a high-scoring regression tree Sp, we perform a greedy search over possible structures. We begin
with a single root node in the tree, which would predict the activity level of process p in all conditions.
Then, we consider every possible single split that could be added to the tree. A split is a test of the form
a.Ri > z for any regulator expression a.Ri and any real value z. Adding this split to the tree would allow
the model to specify two distributions, one for activity levels in experiments where a.Ri > z and one for
experiments where a.Ri ≤ z. Note that, while the addition of a split can never lower a likelihood score, it
can hurt the Bayesian score. We calculate the change in score for each possible split, and if any improve
the score, we use the best split to modify the tree. When no more splits can improve the score, the tree
structure and split cutoff values are fixed.

To score each split, we first note that the Bayesian score of a regression tree can be decomposed as a sum
over terms, each reflecting the score of a single leaf node in the tree. Thus, to calculate the improvement
made by a split, we need only consider the contribution to the score of the affected leaves. Scoring a leaf,
unfortunately, is not trivial. Recall that each leaf � defines a linear Gaussian distributions that depends on
some set of linear parents R�. Given a fixed set of linear parents, we can compute the Bayesian score
of the leaf by integrating over all possible values of the linear coefficients (with a Gaussian prior), as
described by Geiger and Heckerman (2002). We select the set of linear parents at each leaf using a greedy
search, adding linear parents which improve the Bayesian score of the leaf. We note that this computation
is performed every time a new leaf is considered as part of a split operation.

The result of this computation is a model structure specifying the regression tree structure Sp for every
process p. The regression tree parameters are now computed as follows: the variance σ 2

� associated with
the leaf � is estimated using its empirical estimate, and the linear coefficients at each leaf are estimated
using standard linear regression.

4.3. Algorithm summary

We initialize the algorithm by using a standard expression clustering technique to select an assignment
of genes to processes. The result is a model where processes are disjoint and each gene belongs to precisely
one process. We then find an initial set of activity levels using the least squares method, using a degenerate
regression tree (with only a root node) as the regulatory model.

With this initialization, the algorithm repeatedly executes an M-step and an E-step, as specified above.
At each iteration, a new regulatory model is learned using the current hard assignments to G.M and
A.C. This regulatory model is then used to re-estimate new values for the activity levels A.C and of the
gene process memberships G.M.1 The E-step and M-step are repeated until the gene process assignments
stabilize. At that point, no further changes can occur, and the algorithm has converged. We then have a
complete COPR model, including an assignment of genes to processes, an estimate of the activity level
for each process in each array, and a learned regulatory mechanisms for each process.

An important feature of our algorithm is that the membership and activity of each process are not
learned in isolation. Rather, our model is learned over all processes simultaneously, allowing information

1Note that each of these two substeps is executed only once before the next M-step; as these two substeps do not
achieve a global optimum for the E-step, we could also iterate the substeps of the E-step until convergence, or for
some number of steps. Our experiments suggest that this choice makes very little difference.



918 BATTLE ET AL.

and (probabilistic) conclusions from one process to propagate and influence our conclusions about another.
For instance, assume that our learning process places a gene g into process p at some step and that this
membership explains g’s expression data very accurately. In this case, g will be less likely to be a member
of other processes, allowing other genes assigned to the process to have a stronger influence on the activity
level profile of the process.

5. EXPERIMENTAL RESULTS

We evaluated the performance of our models on yeast gene expression data. Our analyses included
examining statistical properties, evaluating our learned COPR models with known biological attributes
of genes and processes, and comparing both the simple OP model and the richer COPR model to other
models on large expression datasets. In each case, we applied the learning algorithm described in Section 4,
specifying a candidate set of regulators and a number of processes.

5.1. The overlapping process model

First, we examined the statistical properties of the OP model, which does not include any regulatory
programs for the processes.

5.1.1. Synthetic data. We began by evaluating the OP model on synthetic data. These experiments test
whether we recover structure known to be present in the data. We generated a synthetic dataset by sampling
from a given OP model. To make the data realistic, we used OP models learned from real biological data
(Gasch et al., 2000). Specifically, we first learned an OP model with seven processes. We then sampled
data for 500 genes and 173 experiments (the original data contained 173 experiments) from the model:
assignments of genes to processes were sampled from the distribution our model had for the G.M variables,
and expression data was then derived by computing the expected expression levels (according to our model
of expression) from the sampled assignment of genes to layers and the a.C means which were part of the
learned model.

We then hid the true assignments of genes to processes and activity levels in arrays, as well as the
original model parameters qp, and learned a model with seven processes from the synthetic expression
data using the algorithm described in Section 4. To test the robustness of our learning algorithm to noise,
we also learned models using various levels of perturbations, where a perturbation level of π corresponds
to shuffling π% of the expression data across all genes and experiments. To gain statistical confidence, we
generated five datasets for each perturbation π and learned a model from each one.

All models were evaluated by their ability to recover the “true” assignments of genes to processes
(the true assignments are the assignments in the sampled data) by performing a pairwise consistency
test: we extracted all gene pairs appearing in the same process in our learned model and computed the
fraction of these pairs appearing in the true data. We also tested the reverse, extracting all the true pairs
and computing the fraction of these pairs appearing in a learned model. The results are summarized in
Fig. 2(a), indicating that our algorithm reconstructs the true structure with very high accuracy even if 30%
of the data is perturbed: gene pairs that are assigned to the same process in the true data are likely to
appear in our learned model and vice versa. Note that in fully randomized data (100% perturbation), a high
fraction of the pairs in the learned model were indeed present in the true data (58 ± 0.4%). This occurs
since the randomized data contains much weaker patterns and the total number of pairs learned is small,
as can be seen by the poor coverage (21.7 ± 2.8%) of true pairs in these models.

As another evaluation, we measured the ability of our learned models to predict unseen data, by comput-
ing the likelihood that each model assigns to held out data. Specifically, we randomly partitioned the data
into five equally sized sets of 100 genes and learned five models from all five possible combinations of four
sets. For each such model, we computed the likelihood it assigned to the held out subset. We compared
these results to the likelihood that the “true” model from which the data was sampled assigned to the held
out test data. These experiments were also performed in the presence of varying levels of perturbations.
The results are summarized in Fig. 2(b). As can be seen, the test set likelihood is comparable (and even
better with very little noise) for up to 30% perturbations, dropping sharply as more noise is added.



MODELING OVERLAPPING BIOLOGICAL PROCESSES 919

FIG. 2. Evaluation of OP model learning on synthetic data. (a) Fraction of learned pairs appearing in the true data
and fraction of true pairs in the learned model for various levels of perturbations. (b) Log-likelihood on test data
achieved for learned models for various levels of perturbations.

Recall that when the number of processes is large, we resort to the approximation described in Section 4.
To evaluate our approximate algorithm, we learned a 12 process model, where we could apply the exact
algorithm and compare the results. In this case, 77.2% of the genes had the same assignment to processes
in the approximation and exact algorithm. However, the training set likelihoods of both models were
practically the same, implying that the errors made by the approximation had little effect. Indeed, when
comparing the test set likelihoods of both models, the differences were negligible.

5.1.2. Real data. To obtain a more comprehensive model of biological processes and regulation, we
applied our method to the 173 yeast microarrays of Gasch et al. (2000), which measured the response
of yeast to various conditions of stress. For this evaluation, we selected 1,010 genes that had significant
changes in gene expression (eliminating the ESR genes for which clustering is trivial), and the full set of
173 arrays, and learned an OP model with 30 processes.

Overall, our model predicted that 24 genes do not participate in any process, 552 genes participate
in only one process, 257 in two, 119 in three, and 58 in four or more processes. As a comparison, we
also tested a Plaid model with 30 processes learned from the same data. (We obtained the Plaid software
from www-stat.stanford.edu/∼owen/plaid/.) The Plaid model assigned many more genes to layers than our
model did, with 0 genes in no processes, 1 gene in one process, 4 genes in two, 10 genes in three, and
995 genes in four or more processes. According to Plaid, almost all genes participate in four or more
processes, a situation not supported by current biological understanding.

To evaluate whether our assignments are biologically plausible, we checked whether the genes associated
with each process showed any enrichment for known annotations. To do so, we used the GO (Ashburner,
2000) and KEGG (Kyoto University Bioinformatics Center, 1995) databases which assign genes to a diverse
set of functional categories and biological pathways, respectively. For each process and each annotation, we
counted the number of genes from the process with that annotation and compared that to the total number
of genes in our dataset with that annotation. If a process we learned indeed corresponds to known biological
processes, then we expect the learned process to contain a high fraction of the genes with the corresponding
annotation. For each combination of process p and annotation α, we can use the hypergeometric distribution
and assign a statistical significance (p-value) measure corresponding to the probability that a randomly
selected group of genes of the same size have similar enrichment for α. We performed this evaluation
for our OP model processes, the layers found by the Plaid model, and clusters from a standard clustering
procedure.



920 BATTLE ET AL.

Overall, we discovered highly significant processes relating to a variety of cellular functions. These in-
cluded oxidative phosphorylation, various transport processes, protein folding, glycolysis, lipid metabolism,
amino acid metabolism, carbohydrate metabolism, protein membrane targeting, ribosomal biogenesis, and
cell cycle control. Some of the stronger active processes we identified were also present as Plaid layers,
but Plaid layers typically included many extraneous genes, rendering the patterns less clear. For example,
neutral lipid metabolism appears as a process of 17 genes with a p-value of 1.26e−21 in our model, while
in Plaid it appeared in a layer of 317 genes with a p-value of 1.22e − 5. Also, protein folding appeared
as a process of 14 genes with a p-value of 1.46e − 16 in our model, while the corresponding Plaid layer
had 254 genes with a p-value of 2.65e − 7. Figure 3(a) shows a scatter plot comparing the p-value for
the GO and KEGG annotations that came up. We can see that, except for a small portion of cases, the
p-value achieved by our approach was always better and often much better than that achieved by Plaid.
We performed a similar comparison to a standard hierarchical clustering algorithm (Eisen et al., 1998),
where we cut the hierarchy at 30 clusters to allow for a comparison to our models. The results are shown
in Fig. 3(b), where again the majority of annotations appeared with greater significance in our model.

In addition to the assignments of genes to processes, our approach attempts to reconstruct the activity
levels of each process p in each array a, as captured by the predicted value of a.Cp. For each process, we
can thus construct a vector A.Cp of the activity levels of p across all arrays a ∈ A. We examined these
activity levels and found that they were biologically plausible for their respective processes. For instance,
the process associated with protein folding (process 18) had high activity levels during heat shock and
exposure to diamide and low activity levels during amino acid and nitrogen depletion, reflecting accurately
the biological function of the process.

It is interesting to measure the correlation between the A.Cp vectors for all processes p and genes that
were not included in our analysis. Due to the way in which we selected the 1010 genes for our analysis,
the genes included are likely to contain only a fraction of the genes associated with each process. If our
model learned activity levels that indeed correspond to activity levels of real processes, then we expect
to see high correlations between some of the left out genes and our learned activity levels. Indeed, there
were many such genes: 614 of correlation above 0.8 and 252 of correlation below −0.8. To test whether
this phenomenon could have happened by chance, we permuted the vector of expression measurements
for each gene and recomputed the correlations. This experiment shows that it is highly unlikely that our
computed correlations could have resulted by chance, as the most significant correlation achieved for any
of the 5,147 permuted genes was −0.32.

Interestingly, there were several cases where the learned process activity levels had high correlation
to the expression of known regulators (e.g., transcription factors) not included in the analysis. The web
supplement lists all regulators with high correlation (or anticorrelation) to any process. Overall, we had
37 unique regulators with correlation above 0.7, of which 10 had correlation above 0.8, and 8 unique

FIG. 3. Comparison of OP model to other approaches. (a) Scatter plot of the log p-value of different GO and KEGG
annotations for layers in Plaid on the one hand (X axis) and OP model processes on the other (Y axis). (b) Scatter
plot of the log p-value of different GO and KEGG annotations for clusters from Pearson clustering on the one hand
(X axis) and OP model processes on the other (Y axis).



MODELING OVERLAPPING BIOLOGICAL PROCESSES 921

regulators with correlation below −0.7, of which 5 had correlation below −0.8. For 12 of the 30 processes,
we learned activity levels that had extremely high correlation with known regulators. When information
about the regulator was available in the literature, we could verify that the regulator was highly correlated
to a process, indeed was known to regulate the genes associated with that process. For example, CLB2,
a G2/M phase specific cyclin, had correlation 0.88 with process 12, which in turn has significant cell
cycle related annotations. Even when information was not available to verify our proposed regulation
relationships, the regulators were known to be related to glucose starvation, cell wall stress, cell growth,
cyclic AMP, ribosome synthesis, nitrogen starvation, and mating, all processes known to be affected by
the conditions in the Gasch et al. (2000) dataset.

5.2. Full COPR model

We next turned to the evaluation of our richer COPR model, which includes regulatory models for the
different processes.

5.2.1. Statistical validation. We first tested whether the COPR model, which includes both the partition
of genes into overlapping processes as well as the regulatory program of each process, resulted in improved
statistical behavior compared to the simpler OP model, which did not include regulatory programs. To this
end, we compared several models learned from the dataset of Gasch et al. (2001), specifying 20 processes,
and using 1,000 genes whose expression levels varied in the dataset. For each model, we selected a different
number of candidate regulators that the model could assign as parents of the activity levels of processes.

As a measure of performance, we first compared the likelihood that the different learned models assign
to the expression data that was used to train the models, as this provides a measure of how well each model
explains the input expression data. Specifically, we evaluated the probability P(E.Level | G.M, A.C, M),
where G.M, A.C are the values of the hidden variables learned by the algorithm, and M is the learned
model. As shown in Fig. 4, models that use a larger number of regulators assign a higher likelihood to
the input expression data. This finding is quite surprising, as the expression level is independent of the
regulatory model given the learned activity levels A.C. The model with no regulatory program can set
these activity levels without constraints, attempting only to optimize this likelihood, whereas our COPR
model is constrained to try to fit some regulatory program when selecting the same set of activity levels. In
general, we would expect the unconstrained model to perform better, so the fact that the regulatory model
provides higher likelihood indicates that the activity levels learned when we take into account regulatory
models are actually more predictive of the expression levels. This behavior could result from an improved
grouping of genes into processes, which would allow the process activity levels to more closely predict
the actual gene expression levels.

However, a good fit to the training expression data does not necessarily imply that the model indeed
captured true characteristics of the underlying domain. To test whether the COPR model captured meaning-
ful properties, we evaluated the model performance on held out test data, using five-fold cross-validation
over genes. Note that the values of the hidden variables—the gene process assignments—are unknown for

FIG. 4. Variation of training set likelihood as number of regulators available to the model is increased from zero.



922 BATTLE ET AL.

genes in the test set. We evaluated the likelihood of the expression levels for the new genes by summing
out over all possible assignments to the process memberships. Overall, the COPR model performed better
than the OP model, assigning a higher likelihood to the held out test data in four out of the five cases, and
achieving only a slightly lower likelihood in the fifth. The average likelihood per gene in the test set for
the COPR model was −454.88, compared to −455.76 for the OP model A paired t-test on these results
revealed a p-value of .04 for the improvement by the COPR model. Overall, these results indicate that the
COPR model is, indeed, learning significantly better activity patterns than the model with no regulatory
programs.

The experiment above demonstrates the ability of COPR to generalize to unseen genes. We also tested
whether our COPR model can generalize to unseen experiments, by performing a similar five-fold cross
validation scheme over arrays, using all 1,000 genes. In this case, the activity levels of the test set arrays
are not known. Using the expression levels of regulators in the held out arrays, our regulatory model can
predict the activity levels of each process in each of these new arrays and thus the expression levels for
genes. We compared the COPR model’s predictive power to a baseline model which uses no regulatory
information and simply predicts expression level to be normally distributed with mean zero. (This very naive
assumption is the best we can do with no predictive information regarding activity.) COPR outperformed
the baseline model (p = 0.02), achieving an average log-likelihood per experiment of −2,687.81, as
compared to −3,097.42 for the baseline model. These results indicate that regulatory programs learned by
the COPR model are in fact predictive of the expression levels of their target genes.

5.2.2. Biological results. We next considered the ability of the COPR model and learning algorithm
to reveal meaningful biological structure. We performed two experiments on different yeast datasets.

Yeast stress data. We first considered the same yeast stress expression data, learning a COPR model
over 2,034 genes using 50 processes. Overall, the learned model had a reasonable partition of genes to
processes, with 1,384 genes predicted to participate in exactly one process, 308 in two processes, 287
in three processes, and only 40 genes in four or more processes. The learned regulation programs were
quite rich, including a total of 321 regulators out of the 466 candidate regulators from which the learning
algorithm was allowed to select.

To analyze the biological plausibility of the assignments of genes to processes, as we did with the
simple model, we tested whether the genes in each process were known to participate in the same process
according to GO database of functional annotations (Ashburner, 2000). For each process p and each GO
annotation t , we used the hypergeometric distribution to assign a p-value for the enrichment of genes
in process p that are assigned to annotation t according to GO. Of the 50 learned processes, 33 were
highly enriched for some known biological function, with p < 0.001. We compared the p-value of these
enrichments to the p-value enrichments obtained using the OP model. Our results, summarized in Fig. 5(a),
show that COPR model learned processes whose genes are significantly more enriched than those learned
in the OP model, where 158 annotations were significantly more enriched in the COPR model.

FIG. 5. Comparison of the simple OP and the COPR models on yeast stress data. Each graph shows a scatter plot
of the negative log p-value for the enrichment of processes for different biological properties, comparing processes in
the OP model (Y axis) and processes in the COPR model (X axis). (a) GO annotations; (b) presence of known motifs;
(c) known transcription factor targets.



MODELING OVERLAPPING BIOLOGICAL PROCESSES 923

As the COPR model also learns the regulatory program for each process, we expect that genes assigned
to the same process are also co-regulated. To test this hypothesis, we compiled a list of known binding
sites from Wingender et al. (2001) and associated each gene with the binding sites that are contained
within its 500 bp upstream region sequence. We then tested whether genes that were assigned by the
COPR model to the process were enriched for any of these known binding sites, where again we used the
hypergeometric distribution to assign a p-value to each such test. Overall, 19 of the 50 processes contained
genes with some shared binding site with p < 0.001. We also examined process enrichment for targets of
106 transcription factors, using the genomewide protein–DNA binding data of Lee et al. (2002). We found
that 20 of the 50 processes were enriched for targets of some transcription factor with p < 0.001.

A comparison to the OP model, shown in Fig. 5(b) and (c), shows that genes assigned to the same process
according to the richer COPR model were significantly more enriched for motifs as well as transcription
factor targets compared to genes that were assigned to the same process according to the OP model. Thus,
we conclude that the inclusion of regulatory programs significantly improved our ability to detect truly
co-regulated sets of genes.

A more in-depth examination of our results revealed several cases where our processes were a particularly
good fit to current biological knowledge. In particular, eleven processes were enriched for a motif m and an
annotation t , where the transcription factor known to bind motif m has a known regulatory role in regulating
process t . As one example, process 48 contained 13 genes, 10 of which were known to participate in
glycolysis (p < 9 ·10−22). In addition, 10 of its member genes shared the binding site for the transcription
factor GCR1, which is known to control glycolysis. From the binding data of Lee et al. (2002), we also
found that this process was enriched for targets of GCR2, which is also involved in glycolysis control.
As another example, process 16 was enriched for protein folding and heat shock genes (p < 1.8 · 10−19).
Importantly, genes in this process were also enriched for the binding site of the transcription factor HSF,
a known regulator of protein folding and heat shock proteins. The binding data also indicated that this
process was enriched for known targets of HSF, agreeing with both the GO and binding enrichments.

Next, we analyzed the quality of the actual regulatory programs that we learned for each process. In
terms of their overall structure, the learned regression trees were plausible: most trees had one or two
splits, no tree had more than four splits, and the majority of leaves had one linear parent. Our COPR
model had multiple instances in which a regulator was used in more than one place in the regulation
program. In most of these cases, the reused regulator appeared as a parent in the linear Gaussian leaf
models of the regulatory program and not in the tree splits. This finding suggests that these two parts of
the model correspond to different types of regulation and that linear regulators can play a role in different
combinatorial contexts; both of these conclusions are consistent with biological knowledge.

We also attempted to validate the actual regulators assigned in each regulatory program. Such validation
is, by necessity, somewhat anecdotal, as the biological knowledge regarding the role of the regulators is
very limited. Nevertheless, our analysis found ten processes in which the regulator had a known function
in regulating the GO function that was enriched in the genes of the process.

Finally, there were many cases in which our learned model suggested novel hypotheses regarding gene
regulation. For example, one of the processes we learned contained 16 genes with an unknown function.
However, in the motif enrichment analysis, we found seven motifs that were significantly enriched for
the genes in this process (each occurring in at least 14 of the 16 genes). Moreover, two of the regulators
assigned as part of the learned regulatory program, STE2 and GAC1, were associated with two of the
enriched motifs. Combined with the coherent expression levels that we observed for these 16 genes, this
result suggests a novel biological process and a putative regulatory program for controlling its activation.

Combined yeast datasets. As our COPR model allows genes to participate in multiple processes, we
can apply it to large compendia of expression measurements that correspond to many different conditions,
in order to study both the common and the specific regulatory relationships in these different conditions.
To this end, we compiled a large compendium of 394 yeast microarrays from four different studies,
including measurements of expression during the cell cycle (Spellman et al., 1998), in response to various
stress conditions (Gasch et al., 2000, 2001), and in response to different gene deletion mutations (Hughes
et al., 2000).

From this combined dataset, we learned a COPR model over 5,747 genes, using 50 processes and 464
candidate regulators. To evaluate the partition of genes to processes, we performed the same enrichment



924 BATTLE ET AL.

evaluation as above, testing the enrichment of genes assigned to the same process for GO annotations
(Ashburner, 2000), cis-regulatory motifs (Wingender et al., 2001), and for binding targets of 106 tran-
scription factors (Lee et al., 2002). The results are shown in Fig. 6. Overall, we found 36 processes that
were enriched for at least one GO annotation with p < .001, 27 processes significantly enriched for DNA
binding motifs, and 22 that were enriched for the targets of one of the 106 transcription factors assayed by
Lee et al. In total, 45 of the 50 processes had some significant enrichment from one of the three sources.

We compared our results with those of the module network framework (Segal et al., 2003b), with the
hypothesis that a model allowing for overlapping processes would perform better on data compiled from
different studies and spanning a wide range of experimental conditions. We note that unlike our COPR
model, in the module networks framework, the regulators are also included in the gene modules, so the
total number of genes grouped is slightly (about 10%) larger. As shown in Fig. 6, we found that our COPR
model had noticeably more significant enrichments for GO annotations, regulatory motifs, and known
transcription factor targets. In particular, out of 410 GO annotations enriched in either model, 312 were
more significantly enriched in the COPR model than in the module networks model. Similarly, of the
32 motifs found to be enriched for either model, 28 were more enriched in the COPR model, and of the
52 transcription factor targets enriched in either model, 40 were more enriched in the COPR model. These
results support the advantages of the two significant extensions of COPR over the module network model:
allowing genes to participate in multiple processes and extending the regulatory model to encompass linear
regulation.

In analyzing the learned regulatory programs, we found nine processes in which at least one of the
predicted regulators had a known role in regulating the function associated with the GO annotation enriched
for the process. As discussed, this type of analysis is limited by our very incomplete knowledge of regulatory
relationships in the biological literature.

We next examined the predicted activity levels for each array. These are interesting as they provide
evidence about cellular activity in different conditions; moreover, as these levels are predicted in part by
the regulatory programs, they provide us with indirect evidence regarding the validity of these programs.
We tested the correspondence between the activity levels and the actual conditions represented by each
array. As we expect some processes to be differentially regulated in different conditions (e.g., heat shock
proteins should be activated under various stress conditions), such correspondence would provide evidence
that the learned activity levels correspond to true regulatory patterns.

Specifically, we compiled a list of 74 annotations for the different arrays, which specify the experimental
condition that is represented by each array. For example, our list included annotations for the various cell
cycle phases, as well as annotations for the different stress conditions to which the yeast was subjected
(e.g., heat shock, nitrogen depletion). To measure how well our activity levels corresponded to these
annotations, we performed a student t-test for each process p and each experiment annotation t , which
measured whether the distribution of the activation levels was different between the arrays labeled with
annotation t and those that are not labeled with it.

FIG. 6. Comparison of the module network model of Segal et al. to our COPR model on the yeast compendium data.
Each graph shows a scatter plot of the negative log p-value for the enrichment of processes for different biological
properties, comparing processes in the module network model (Y axis) and processes in the COPR model (X axis).
(a) GO annotations; (b) presence of known motifs; (c) known transcription factor targets.



MODELING OVERLAPPING BIOLOGICAL PROCESSES 925

Table 1. A Sample of Activity Level Correlations with Experiment Annotations,
Paired with Relevant GO Annotations

Process Experiment annotation t-test GO annotation p-value

47 Mating 4.455 Mating 2.202e−9
46 Hyperosmolarity 12.083 Plasma membrane 2.65e−17
45 Protein modification 27.160 26S proteasome 2.187e−54
38 Mitochondrion 3.527 Mitochondrial inner membrane 3.11e−22
36 Heat 4.183 Heat shock protein 8.76e−05
26 Peroxisome organization 9.293 Peroxisomal matrix 5.94e−09
19 Stationary phase 3.651 S phase of mitotic cell cycle 1.91e−20
17 Chaperone activity 5.262 Chaperone 7.06e−20

For all 50 processes, we found that their activation levels had a high correspondence with at least one
annotation with p < 0.025. In 19 cases, the experiment annotation corresponded to the significant GO
annotation of the process. For example, the activation levels for the (GO annotated) protein folding process
had a high correspondence to the stress annotation. Protein folding is known to be activated in response to
various stress conditions, such as heat and exposure to certain chemicals. A partial list of the significant
associations between activation levels and experiment annotations is shown in Table 1. We also compared
the experiment annotations associated with a process to transcription factors associated with it via motif
or transcription factor target enrichment. Overall, we found 11 processes where the experiment annotation
matched the function of the associated transcription factor.

In many cases, the genes in the process, and the activity profile associated with the process, appear
to define a very coherent biological unit. For example, process 43 was enriched for the targets of three
mitosis regulating transcription factors from the genomewide protein–DNA binding data. This process was
also enriched for a motif related to mitosis. The activity levels of this process were lowered significantly
for the M-G1 phase annotated experiments (t-test value −3.18), and above normal for M-phase annotated
experiments and experiments annotated with chromatin modification. This process has only a weak GO
enrichment for the chromatin annotation, but the other evidence strongly suggests that it is associated with
mitosis, perhaps with the transition from the M phase to the G1 phase in the cell cycle.

As another example, process 47 was strongly associated with GO annotations related to mating pro-
cesses: “mating” (p = 2.02x10−9), “pheromone response” (p = 9.67x10−6), and zygote formation
(p = 1.5x10−5). Correspondingly, the activity level profile showed increased activity for experiments
annotated for mating, pseudohyphal growth, and lowered activity in conditions such as salt stress, where
we expect mating behavior to be repressed. The regulator RME1, which is associated with meiosis, was
included in the learned program of this process. The process was strongly associated with two other
transcription factors, MCM1, which regulates DNA replication, and STE12, which is associated with
pheromones, exhibiting enrichment both for the targets of these two transcription factors in the protein–
DNA binding data and for their motif in the genes’ promoter regions. This process has strong support in
the biological literature, which suggests that MCM1 and STE12 interact in the regulation of mating (Mead
et al., 2002) and even suggests a mating pathway in which MCM1 and our predicted regulator RME1 are
both involved (Frenz et al., 2001; Kunoh et al., 2000b, 2000a).

6. CONCLUSIONS AND FUTURE WORK

This paper proposes a probabilistic framework for modeling overlapping cellular processes and extracting
these models from gene expression data. We discussed a simple overlapping process model which includes
only gene membership in processes and process activity, and an extended model—the COPR model—which
includes regulatory programs for each process.

Our results demonstrate the advantage of allowing genes to participate in more than one process and
validate the biological assumptions that underlie our probabilistic model. In the results for our richer COPR



926 BATTLE ET AL.

model, we have shown that, by forcing our model to be consistent with regulatory programs, we obtain a
better explanation of the data and processes that are biologically much more coherent.

We have also shown several cases where the predicted regulatory programs are consistent with current
biological knowledge. In many cases, our COPR model’s predictions are remarkably coherent: A process
associated with a certain cellular function is often predicted to be active in precisely the conditions where
that function plays a role. Such coherent results involving uncharacterized genes or regulators can suggest
novel biological hypotheses that can be tested in the lab.

There are several possible extensions to our work. First, our use of a unified probabilistic framework
easily allows the modular integration of additional data sources. For example, rather than using the protein–
DNA binding data of Lee et al. (2002) solely for validating our result, we can directly integrate it into our
model as a noisy sensor for regulation (as in Segal et al. [2002]). Another direction is the application of
our framework to Affymetrix microarray technology, which measures the absolute expression level of a
gene rather than its level relative to some control. Our approach, constrained to include only nonnegative
activity levels, might provide a good decomposition of the observed expression levels into overlapping
processes. Finally, it would be valuable to apply our framework to the analysis of cellular processes and
regulation in human microarray data, where we expect the regulatory programs to be quite complex due
to tissue-specific gene activation, so that genes are likely to play multiple roles.

ACKNOWLEDGMENTS

This work was supported by NSF grant ACI-0082554 under the ITR Program. Eran Segal was also
supported by a Stanford Graduate Fellowship.

REFERENCES

Alter, O., Brown, P.O., and Botstein, D. 2000. Singular value decomposition for genome-wide expression data
processing. Proc. Natl. Acad. Sci. 97(18), 10101–10106.

Ashburner, M. et al. 2000. Gene ontology: Tool for the unification of biology. Nature Genet. 25, 25–29.
Bjorck, A. 1996. Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA.
Breiman, L., Friedman, J.H., Olshen, R., and Stone, C. 1984. Classification and Regression Trees, Wardsworth Inter-

national Group, Belmont, CA.
Cheng, Y., and Church, G.M. 2000. Biclustering of expression data. ISMB’00.
Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM algorithm.

J. Royal Statist. Soc. B 39, 1–39.
Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. 1998. Cluster analysis and display of genome-wide expres-

sion patterns. PNAS 95, 14863–14868.
Frenz, L., Johnson, A., and Johnston, L. 2001. Rme1, which controls CLN2 expression in Saccharomyces cerevisiae,

is a nuclear protein that is cell cycle regulated. Molecular Genetics and Genomics 266(3), 374–384.
Friedman, N. 1998. The Bayesian structural EM algorithm. Proc. UAI.
Friedman, N., Nachman, I., and Peér, D. 1999. Learning of Bayesian network structure from massive datasets: The

“sparse candidate” algorithm. Submitted.
Gasch, A.P., Huang, M., Metzner, S., Elledge, S.J., Botstein, D., and Brown, P.O. 2001. Genomic expression responses

to DNA damaging agents and the regulatory role of the yeast ATR homolog meclp. Mol. Biol. Cell 12(10), 2987–
3003.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. 2000.
Genomic expression program in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257.

Geiger, D., and Heckerman, D. 2002. Parameter priors for directed acyclic graphical models and the characterization
of several probability distributions. Ann. Statist. 30(5), 1412–1440.

Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai,
H., He, Y.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D.,
Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., and Friend, S.H. 2000. Functional discovery via a compendium
of expression profiles. Cell 102(1), 109–126.

Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., and Barkai, N. 2002. Revealing modular organization in
the yeast transcriptional network. Nature Genet. 31, 370–377.



MODELING OVERLAPPING BIOLOGICAL PROCESSES 927

Koller, D., and Pfeffer, A. 1998. Probabilistic frame-based systems. Proc. AAAI.
Kunoh, T., Kaneko, Y., and Harashima, S. 2000a. Positive regulation of transcription of homeoprotein-encoding YHP1

by the two-component regulator Sln1 in Saccharomyces cerevisiae. Biochemical and Biophysical Research Commu-
nications 278(2), 344–348.

Kunoh, T., Kaneko, Y., and Harashima, S. 2000b. YHP1 encodes a new homeoprotein that binds to the IME1 promoter
in Saccharomyces cerevisiae. Yeast 16(5), 439–449.

Kyoto University Bioinformatics Center. 1995. KEGG: Kyoto encyclopedia of genes and genomes. www.genome.ad.
jp/kegg.

Lazzeroni, L., and Owen, A. 1999. Plaid models for gene expression data. Technical report, Stanford.
Lee, T.I., et al. 2002. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 824–827.
Lerner, U., and Parr, R. 2001. Inference in hybrid networks: Theoretical limits and practical algorithms. Proc. 17th

Ann. Conf. on Uncertainty in Artificial Intelligence.
Mead, J., Bruning, A.R., Gill, M.K., Steinera, A.M., Acton, T.B., and Vershon, A.K. 2002. Interactions of the Mcm1

MADS box protein with cofactors that regulate mating in yeast. Mol. Cell. Biol. 22, 4607–4621.
Pe’er, D., Regev, A., Elidan, G., and Friedman, N. 2001. Inferring subnetworks from perturbed expression profiles.

ISMB ’01.
Segal, E., Barash, Y., Simon, I., Friedman, N., and Koller, D. 2002. From sequence to expression: A probabilistic

framework. Proc. RECOMB.
Segal, E., Pe’er, D., Regev, A., Koller, D., and Friedman, N. 2003a. Learning module networks. Proc. UAI, Acapulco,

Mexico, 525–534.
Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., and Friedman, N. 2003b. Module networks:

Identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genet.
Segal, E., Taskar, B., Gasch, A., Friedman, N., and Koller, D. 2001. Rich probabilistic models for gene expression.

Bioinformatics 17(Suppl. 1), S243–S252.
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and

Futcher, B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae
by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297.

Tanay, A., Sharan, R., and Shamir, R. 2002. Discovering statistically significant biclusters in gene expression data.
Proc. ISMB. Bioinformatics 18(Suppl. 1), S136–S144.

Wingender, E., et al. 2001. The TRANSFAC system on gene expression regulation. Nucl. Acids Res. 29, 281–283.

Address correspondence to:
Alexis Battle

353 Serra Mall
Computer Science Department

Stanford University
Stanford, CA 94305-9010

E-mail: ajbattle@stanfordalumni.org


