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ABSTRACT

Transcriptional regulation is mediated by the coordinated binding of transcription factors
to the upstream regions of genes. In higher eukaryotes, the binding sites of cooperating
transcription factors are organized into short sequence units, called cis-regulatory modules.
In this paper, we propose a method for identifying modules of transcription factor binding
sites in a set of co-regulated genes, using only the raw sequence data as input. Our method
is based on a novel probabilistic model that describes the mechanism of cis-regulation,
including the binding sites of cooperating transcription factors, the organization of these
binding sites into short sequence modules, and the regulation of a gene by its modules. We
show that our method is successful in discovering planted modules in simulated data and
known modules in yeast. More importantly, we applied our method to a large collection
of human gene sets and found 83 significant cis-regulatory modules, which included 36
known motifs and many novel ones. Thus, our results provide one of the first comprehensive
compendiums of putative cis-regulatory modules in human.
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1. INTRODUCTION

Many of the functions carried out by a living cell require the coordination of gene expression,
to ensure that genes are expressed when they are needed. To understand biological processes, it is

thus necessary to understand this transcriptional network. Much of the information that determines when
and where genes are expressed is encoded in an organism’s genome sequence. Although we now have
sequences for many organisms, our understanding of how this cis-regulatory information is encoded is
very limited.

In higher eukaryotes, cis-regulatory information is organized into modular units, called cis-regulatory
modules (CRMs), where each CRM consists of a few hundred base pairs, and contains multiple binding
sites for multiple transcription factors (TFs) (Yuh et al., 1998; Ludwig et al., 1998; Krivan and Wasserman,
2001). Methods for identifying CRMs and their component TFs can thus reveal the organization of the
transcriptional network in the cell.

1A preliminary version of this paper appeared in Segal and Sharan (2004).
2Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021.
3School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
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In principle, one could use a two-phase approach for identifying CRMs in a set of upstream regions of
co-regulated genes. The first phase would scan for single motifs that are enriched in the upstream regions
(see, e.g., Bailey and Elkan [1994], Roth et al. [1998]). The second phase would then try to find correlations
between these enriched motifs. Such an approach is suitable for discovering some types of CRMs, like
the one depicted in Fig. 1(a). However, since each motif is considered in isolation, this approach will
fail to discover more subtle CRMs, in which no single motif is enriched, as exemplified in Fig. 1(b).
CRMs of the latter type can be found by approaches that look for combinations of motifs that exhibit
functional synergism, or tend to co-occur in sequences of interest (Wasserman and Fickett, 1998; Pilpel
et al., 2001; GuhaThakurta and Stormo, 2001; Segal et al., 2003; Thompson et al., 2003). However, since
these methods do not constrain the occurrences of motifs in each combination to be close together within
the upstream region, they will fail to discover CRMs of the type shown in Fig. 1(c). Recently, several
methods have been suggested to identify occurrences of known CRMs (Berman et al., 2002; Frith et al.,
2001) and to find novel CRMs given a database of known motifs (Sharan et al., 2003; Kel-Margoulis et al.,
2002; Aerts et al., 2003), but these methods are restricted to TFs whose binding sites have been previously
characterized. To date, we are aware of only one approach that tries to identify novel CRMs and at the
same time learn their component motifs de novo (Marsan and Sagot, 2000). A shortcoming of the latter
approach is that it is based on a consensus sequence representation of a motif, which has less expressive
power compared to the more widely used position weight matrix model.

In this paper, we propose a novel model for transcriptional regulation, based on probabilistic graphical
models (Pearl, 1988), and an algorithm to learn this model automatically from data. Our input consists

FIG. 1. Comparison of the ability of different methods to detect different types of CRMs. Shown for all cases are the
gene upstream regions and the locations of binding sites within them, where genes in the “Cluster” contain the CRM,
and genes in the background do not. (a) CRM consisting of a single motif. (b) CRM consisting of a combination of
two motifs. (c) CRM consisting of a combination of two motifs that are spatially close to each other. (d) Methods that
search for a single motif can find only CRMs of type (a). Methods that search for motif combinations but disregard
their spatial relationships cannot find CRMs of type (c). Our proposed method can find CRMs of all types shown.
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of a set of putatively co-regulated genes and their raw sequence data. The model has three components.
The first is a motif model that describes the probability that a gene contains a binding site for some motif
given the upstream region sequence of the gene. In the second component, we consider sequence windows
of a prescribed length along the gene’s upstream region. For each window, we model the probability that
it contains a CRM that involves k specific motifs, given the binding site occurrences of these motifs. The
third component models the probability that a gene contains a CRM given the CRM occurrences in each of
the considered windows. We propose an iterative algorithm, based on the expectation maximization (EM)
algorithm, for learning the model parameters, and a cross-validation procedure to test the significance of the
learned CRMs. Our unified framework generalizes existing approaches for finding CRMs, by integrating
both a model for TF binding sites and a model for their organization into modular units. In particular, our
method learns motifs de novo and is suitable for identifying all types of CRMs depicted in Fig. 1.

A key property of our model is that it is discriminative (Segal et al., 2003; Sinha, 2002): Given a set of
upstream regions of co-regulated genes and a background set of upstream regions, the model only attempts
to find combinations of motifs that discriminate between the two sets. This is in contrast to the common
generative approaches, which try to build a model of the upstream region sequences and train its parameters
such that the model assigns the given sequences a high probability. These approaches can often be confused
by repetitive motifs that occur in many upstream regions. These motifs have to be filtered out by using an
appropriate background distribution (Tavazoie et al., 1999). As we show, our discriminative model allows us
to avoid the problem of learning these background distributions and focus on the classification task at hand.

We evaluated the performance of our method on simulated and real data. On simulated data, our method
outperformed extant approaches and recovered planted CRMs with high accuracy. On real yeast data, we
identified significant CRMs in 11 out of 25 tested gene sets that are putatively regulated by two cooperating
TFs. In the majority of the cases in which the motifs for the corresponding TFs were known (7 out of 11),
our method recovered them correctly. Finally, we applied our method to a large collection of human gene
sets, derived from the gene ontology (GO) process categorization (Ashburner et al., 2000). Overall, we
identified 83 significant CRMs that spanned a diverse set of functional annotations. Many of these CRMs
consisted of motifs that matched known motifs in the literature, providing additional support that our
learned CRMs indeed correspond to true cis-regulatory signals in human.

The rest of the paper is organized as follows: Section 2 presents our probabilistic model of cis-regulation.
Section 3 describes the process of learning the model parameters from data. Results of our algorithm on
simulated and real data are presented in Section 4.

2. THE PROBABILISTIC MODEL

In this section, we present our model of cis-regulation. We model a CRM that consists of k distinct
binding site motifs for k TFs, in the upstream region sequences of a set of genes G, where each gene is
either regulated by the CRM or not. Thus, we associate a binary Regulation attribute R and an upstream
region sequence attribute S with each gene. Since we expect a CRM to span a relatively short region,
we partition the upstream region S into n shorter overlapping sequence windows, where each window has
length L. The model then considers CRM occurrences only within these windows.

Our model has three components. The first is a motif model, which represents the motif binding sites
that are bound by each of the k TFs. We use the motif model to define n binary attributes for each TF i,
g.Mi1 . . . g.Min, indicating whether each of the n windows contains a binding site for the TF. The second
component is a module model which represents a CRM as a combination of individual motifs. We use the
module model to define n binary attributes, g.W1, . . . g.Wn, corresponding to whether the CRM appears
in each of the n sequence windows. The last component is a regulation model that models the regulation
of a gene, g.R, by the CRM, as a function of the CRM occurrences in the n different windows. The full
model is shown in Fig. 2. In the following, we describe each of the model components in detail.

2.1. Motif model

The first component in our model is a set of variables that represent the binding site motifs for each
of k transcription factors. For each gene g, we have a set of binary-valued Motif variables, M =
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FIG. 2. Illustration of our unified model for a simple example with upstream regions of length eight, windows
of length four with two base-pair overlaps, and two motifs. The model contains a total of four distinct conditional
probability distributions (CPDs). The CPDs for the first motif are the same, and hence P(g.M1 | S) = P(g.M11 |
S) = P(g.M12 | S) = P(g.M13 | S). Similarly, the CPDs for the second motif are the same, and hence P(g.M2 |
S) = P(g.M21 | S) = P(g.M22 | S) = P(g.M23 | S). Finally, the same CPD is shared across all windows, and hence
P(g.W | g.M1, g.M2) = P(g.W1 | g.M1, g.M2) = P(g.W2 | g.M1, g.M2) = P(g.W3 | g.M1, g.M2).

{g.M11 . . . g.Mkn}, where g.Mij takes the value true iff motif i appears in the j -th sequence window
of g. Thus, we allow the motif to play a regulatory role in controlling the expression of gene g, by being
a part of the CRM in some windows. We model each motif using the standard position specific scoring
matrix (PSSM) representation (Bailey and Elkan, 1994; Roth et al., 1998), which assumes independence
between positions in a binding site. This model assigns a weight to each position in the motif and each
nucleotide � ∈ {A, C, G, T }, representing the extent to which the nucleotide’s presence in this position is
associated with the motif.

When learning PSSMs, our goal is to estimate the probability that a transcription factor binds a certain
gene given its upstream region. Hence, we adapt the discriminative motif model of Segal et al. (2002),
which is well suited for this purpose. This model is specified using a logistic function with p position-
specific weights wi[�], one for each position i and each letter � ∈ {A, C, G, T }, and a threshold w0. For
a window sequence of length L, we assume that binding occurs once, and with equal probability at each
of the L − p + 1 possible positions in the sequence. The probability of binding given the sequence is then
specified as

P(g.M = true | g.S1, . . . , g.SL) = logit

⎛
⎝log

⎛
⎝ w0

L − p + 1

L−p+1∑
j=1

exp{
p∑

i=1

wi[g.Si+j−1]}
⎞
⎠
⎞
⎠ ,

where logit(x) = 1
1+e−x is the logistic function. We refer the reader to Segal et al. (2002) for additional

details.

2.2. Module model

The second component in our model describes the composition of a CRM in terms of its component
motifs. To capture the notion that some motifs may be more important for a particular CRM than others,
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we model a CRM as a weighted combination of individual motifs. Specifically, we use the logistic function
for representing the probability that a sequence window contains the CRM, given the occurrences of the
individual motifs in the sequence

P(g.Wj = true | g.M1j , . . . , g.Mkj ) = logit

(
v0 +

k∑
i=1

vi · g.Mij

)

where g.Wj is a binary variable representing whether the j -th sequence window contains the CRM, g.Mij

is a binary variable representing whether the motif bound by transcription factor i is present in the j -th
window, and vi is a weight that specifies the extent to which motif i plays a regulatory role in the CRM.
As the probability that a window contains the CRM depends on

∑k
i=1 vi · g.Mij , the higher vi the more

it contributes to this probability. For interpretability considerations, we restrict the motif weights to be
positive (except for v0). Intuitively, this means that a CRM can depend only on the presence of certain
motifs and not on the absence of motifs. We use the CRM model to define n binary window variables for
each gene, g.W1, . . . g.Wn, where the variable for the j -th window, g.Wj , depends on the motif occurrences
in the j -th window, g.M1j , . . . , g.Mkj . Note that the same logistic model is shared across all genes and
all windows.

2.3. Regulation model

The last component in our model combines the information from each window to specify whether the
gene is indeed regulated by the CRM. This model follows our intuition that the probability that a gene is
regulated by a CRM increases with the number of windows in its upstream region that contain the CRM.
The model describes this regulation probability using a logistic function:

P(g.R = true | g.W1, . . . , g.Wn) = logit

(
p0 +

k∑
i=1

pi · g.Mi

)
,

where g.Wi indicates whether window i contains the CRM, and pi specifies the extent to which the
presence of the CRM in window i contributes to the overall probability that the gene is regulated. If
we expect a priori that certain sequence windows are more likely to contain the CRM than others, then
we can assign a higher weight to those windows. For example, when searching for CRMs in human, we
might assign a higher weight to those sequence windows that are more conserved between human and
mouse. In our setting, we assume that all windows are equally likely to contain the CRM and, thus, use
the same weight for all windows. As we show later, this assumption leads to significant computational
advantages.

2.4. Unified model

We combine the above three components into a unified probabilistic graphical model, shown in Fig. 2.
The model defines the following joint distribution:

P(g.R, g.W, g.M | g.S)

= P(g.R | g.W)

n∏
j=1

(
P(g.Wj | g.M1j , . . . , g.Mkj )

k∏
i=1

P(g.Mij | g.Sj )

)
,

(1)

where g.Sj is the sequence of window j , and each of the above conditional probability distributions is
parameterized as described in the previous sections. Given a model parameterization, we can compute the
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probability that a gene is regulated by the CRM given the sequence

P(g.R = true | g.S) =
∑
w̄∈W

P(g.R = true | g.W = w̄)

·
∑
m̄∈M

P(g.W = w̄ | g.M = m̄)P (g.M = m̄ | g.S)

=
∑
w̄∈W

P(g.R = true | g.W = w̄)

·
n∏

j=1

∑
m̄∈M[j ]

P(g.Wj = w̄[j ] | g.M[j ] = m̄) ·
k∏

i=1

P(g.Mij = m̄[i] | g.S)

where w̄ is a vector that ranges over all possible assignments to each of the n window variables, m̄ is a
vector that ranges over all possible assignments to each of the k · n motif variables, and M[j ] corresponds
to the set of motif variables for window j , M1j , . . . , Mkj .

3. LEARNING THE MODEL

In the previous section, we presented our probabilistic model. We now turn to the task of learning this
model from data. Our training dataset D consists of a set of genes G, where for each gene g we are given
its upstream region sequence g.S and the value of g.R, indicating whether g is regulated by the CRM or
not. In learning the models, we need to estimate the model parameters, which include the weights of the
k PSSMs, the weights of the logistic distribution v0, . . . , vk for the module model P(g.W | g.M), and the
weights of the logistic distribution p0, . . . , pn for the regulation model P(g.R | g.W).

We follow the standard approach of maximum likelihood estimation: Find the parameters θ that maximize
P(D | θ). Our learning task is made considerably more difficult by the fact that both the Motif variables
g.M and the Window variables g.W are unobserved in the training data. In this case, the likelihood function
has multiple local maxima, and no general method exists for finding the global maximum. Thus, we use the
expectation maximization (EM) algorithm (Dempster et al., 1977), which provides an approach for finding
a local maximum of the likelihood function. Starting from an initial guess θ (0) for the parameters, EM
iterates the following two steps. The E-step computes the distribution over the unobserved variables, given
the observed data and the current estimate of the parameters. The M-step then re-estimates the parameters
by maximizing the likelihood of the data with respect to the distribution computed in the E-step. This
estimation task differs for the different parts of the model.

3.1. E-step: Inferring modules and regulation

Our task in the E-step is to compute the distribution over the unobserved data, which in our setting
means computing P(g.W, g.M | g.S, g.R). As genes are assumed to be independent, this computation can
be done separately for each gene, by performing inference in the Bayesian network of Fig. 2. Moreover,
since the sequence variables g.S are always observed, the network in which we need to perform infer-
ence is effectively a tree. Hence, inference can be performed efficiently using the clique tree algorithm
(Pearl, 1988).

In general, the computations carried out by the clique tree algorithm are exponential in the number of
parents of each node in the network. In our case, this means that the E-step will be exponential in the
number of Motif and Window variables. As the number of motifs k in a CRM is typically small (k ≤ 5),
our main computational concern is with the number of windows. In a typical setting, we might search
for CRMs in upstream regions of length 1,000 bp, using windows of length 200 bp with an overlap of
100 bp between windows. In this case, we have nine windows and the E-step can be computed efficiently.
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However, there might be settings in which we wish to search for CRMs in longer upstream regions, or
using larger overlaps between windows. In such settings, exact inference becomes infeasible.

When the number of windows is prohibitively large, we propose to use the hard assignment version of the
EM algorithm. In this version, the E-step computes the most likely assignment to the hidden variables, and
the M-step then re-estimates the parameters by maximizing the likelihood with respect to the assignment
computed in the E-step. Under the assumption that all sequence windows are equally likely to contain
the CRM, it turns out that we can find the most likely assignment to the hidden variables in time that
is linear in the number of windows. The algorithm is based on the observation that if the weights pi

of the logistic function P(g.R | g.W) are the same for all windows, then the value of the first term in
Equation (1) is a function of the number t of window variables whose assignment is true and does not
depend on which window variables are actually set to true. Hence, under the constraint that exactly t of the
window variables are assigned to true, the problem of finding the most likely assignment can be reduced
to finding

{w̄, m̄} = argmaxw̄′,m̄′P(g.W = w̄′ | g.M = m̄′)P (g.M = m̄′ | g.S)

= argmaxw̄′,m̄′
n∏

j=1

P(g.Wj = w̄′[j ] | g.M[j ] = m̄′[j ])P (g.M[j ] = m̄′[j ] | g.S)

where w̄ and m̄ range over all possible assignments to the Window and Motif variables, respectively. Thus,
the computation decomposes by windows, and the most likely assignment under this constraint is to assign
to true the t window variables with the highest value of the expression

max
m′

P(g.W = true | g.M = m′)P (g.M = m′ | g.S)

P (g.W = false | g.M = m′)P (g.M = m′ | g.S)
.

Finally, we choose t as the integer 0 ≤ t ≤ n that yields the assignment with the highest probability.

3.2. M-step: Estimating model parameters

In the M-step, our goal is to estimate the parameters for the distribution of each component of
the model so as to maximize the conditional log probability of that component. For the motif model,
this means estimating the parameters P(g.Mi | g.S) for each motif i of the k motifs that maximize∑

g∈G
∑n

j=1
∑

m∈Mij E[Mij = m] log P(g.Mij = m | g.S), where m ranges over the possible assign-
ments to Mij , {false, true}, and E[Mij = m] is computed in the E-step and is equal to the probability
P(g.Mij = m | g.S, g.R). Unfortunately, this optimization problem has no closed form solution, and
there are many local maxima. Hence, we use a conjugate gradient ascent to find a local optimum in the
parameter space.

For the module model, we need to estimate the logistic weights of each motif, w0, . . . , wk , in the dis-
tribution P(g.W | g.M) that maximize

∑
g∈G

∑n
j=1

∑
m∈Mj

∑
w∈Wj

E[Wj = w, Mj = m] log P(g.Wj =
w | g.Mj = m), where Mj = {M1j , . . . , Mkj }, m and w range over the possible assignments to Mj and
Wj , respectively, and E[Wj = w, Mj = m] is computed in the E-step and is equal to the probability
P(g.Wj = w, g.Mj = m | g.S, g.R). Each weight is also constrained to be positive (see Section 2.2). Al-
though there is no closed solution for this constrained optimization problem, the target function is convex,
allowing us to find the optimal parameter estimates using gradient ascent on the target function.

Finally, we need to estimate the window weight parameters of the distribution P(g.R | g.W) that
maximize

∑
g∈G

∑
w∈W E[R = r, W = w] log P(g.R = r | g.W = w), where w ranges over the possible

assignments to W, r indicates whether g is regulated, and E[R = r, W = w] is computed in the E-step
and is equal to the probability P(g.R = r, g.W = w | g.S). This optimization problem is similar to the
module model case and, thus, we apply gradient ascent to find the optimal parameter setting.

3.3. Model initialization

In the previous sections, we showed how to apply the EM algorithm to improve the quality of the model
in every iteration and converge to a local maximum of the likelihood function. However, the EM algorithm
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requires an initial model parameterization, which we need to provide. As for all applications of EM, the
quality of the starting point has a large impact on the quality of the local optimum found by the algorithm.

We devised a two-phase scheme for the initialization of the motif parameters. In the first phase, we
efficiently generate motif seeds of fixed length (6–8 bp) that are abundant in the upstream regions of the
regulated genes. We use the identified seeds to initialize motifs by considering occurrences of these seeds
with at most one mismatch. These occurrences allow us to initialize a PSSM for each seed and also to
possibly extend it at its ends by positions whose information content exceeds a threshold. In the second
phase, we score combinations of up to k motif seeds, using the hypergeometric significance test, allowing
us to find motif combinations that discriminate between the regulated genes and the nonregulated ones.
Thus, even in the initialization step, we search for combinations of motifs rather than individual motifs,
as this initialization is more suited for the types of CRMs we wish to find.

4. EXPERIMENTAL RESULTS

We applied our module identification method to simulated and real data. The goal of the simulations
was to test the ability of the algorithm to recover planted CRMs. In real data, we wished to evaluate the
performance of the algorithm in recovering known modules in yeast and to apply it to discover novel
modules in human. In all cases, the only input to our program was a set of upstream regions, the window
length L, and the list of regulated genes, whose upstream regions are expected to contain the CRM. We
designed all models such that a gene is regulated even if only one of its sequence windows contains the
CRM, by fixing the weights, pi , of all windows in the regulation model of Section 2.3 to 12 and setting
p0 = −6. By fixing these weights, the learning algorithm tries to find CRMs that do not occur in windows
of background genes and occur at least once in the sequence windows of the regulated genes. While
this results in more interpretable models, it brings up a practical consideration, which is that most of the
sequence window variables, and consequently most of the motif variables, will be set to false, leading to an
unbalanced optimization problem when updating the weights of each motif. Thus, in practice, we balance
this optimization problem by considering the window with the highest posterior probability for each gene.

4.1. Simulated data

As a basic test of our procedure in a controlled setting, we generated random upstream region sequences
of length 400 for 50 regulated and 50 nonregulated genes. We then planted CRMs consisting of two motifs
of length 8 in a varying fraction of the regulated genes. This gives a known ground truth to which we
can compare the learned models. To make the data realistic, we also planted both motifs in 25 of the
nonregulated genes, but unlike the motif occurrences in the regulated genes, which were constrained to
appear in proximity within the upstream regions, we randomly distributed the two motifs of these 25
nonregulated genes within the upstream regions. Our setting is thus designed so that algorithms that search
for a single motif, or algorithms that search for motif combinations but ignore the spatial locations of
motifs, will not succeed. Indeed, our algorithm recovered the planted motifs with high accuracy, whereas
the above methods did not, as shown in the comparison of the ROC curves of Fig. 3(a). These curves
compare the false positive rate to the true positive rate, when changing the probability threshold at which
the Regulates variable, g.R, is considered to contain the CRM. As transcription factors vary greatly in their
binding specificity, it is important that our method can recover CRMs whose motifs exhibit variation in
their actual instances. To test this ability, we generated six different datasets, where in each case we varied
the information per bit in the PSSM from which we sampled the planted motifs. The results of applying
our method to each of these datasets are shown in Fig. 3(b), indicating that most of the planted motifs are
recovered even when there is large variation in their instances. The input to our method includes a set of
co-regulated genes that are expected to share a CRM. As this input set may contain errors, it is important
that we recover CRMs even when only a fraction of the input regulated genes contain it. To test this, we
applied our method to six different datasets that varied in the fraction of regulated genes in which we
planted the CRM. Our results, in Fig. 3(c), show very good performance even when the CRM was planted
in only 30 of the 50 co-regulated genes, slightly more than the 25 confounding occurrences of the motifs
in the nonregulated genes.
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FIG. 3. Performance on simulated data, shown as ROC curves, where the x-axis is the false positive rate, FP/(FP +
TN), and the y-axis is the true positive rate, TP/(TP + FN). In all cases, both motifs were planted in 25 of the
nonregulated genes. (a) Comparison of different methods when the motifs were planted in all 50 regulated genes and
sampled from PSSMs with 1.5 bits of information per each of the eight positions. (b) Performance as a function of
binding specificity. In each dataset the motifs were planted in all 50 regulated genes, but were sampled from motifs
with varying bits of information per position. (c) Performance as a function of the fraction of regulated genes in
which the motifs were planted, where the planted motifs were sampled from a PSSM with 1.5 bits of information per
position.

4.2. Cis-regulatory modules in yeast

To evaluate the performance of our method in a more realistic setting, we tested its ability to detect
putative cis-regulatory modules in yeast. As the collection of CRMs in the literature is limited, we used
the genomewide location data of Lee et al. (2002) to compile a collection of gene sets for which strong
experimental evidence suggests that the genes in each set are regulated by the same two transcription factors.
We hypothesized that the genes in each such set should thus contain a CRM consisting of the binding
sites for the two TFs. Specifically, the location data contains genomewide chromatin-immunoprecipitation
experiments for 106 yeast TFs, where each experiment measured the relative occupancy of the upstream
regions of all yeast genes by the TF. We considered measurements with p < 0.001 as indicating that the
TF binds the upstream region of the corresponding gene. Thus, with each TF, we associated a set of target
genes to which the TF binds in vivo. To obtain gene sets that are regulated by two TFs, we computed
the intersection of the targets of every pair of TFs and kept only those intersections with at least 25
genes, such that the size of the intersection was greater than would be expected by chance (scored using a
hypergeometric distribution). Altogether, we found 25 such gene sets. We hypothesized that each such set
contains a CRM corresponding to the two TFs and applied our method to each set using 100 bp windows
with 50 bp overlaps, and 500 bp–long upstream region for each gene.1 In each case, we took the genes
in the intersection set to be regulated (g.R = true) and selected 100 random genes for which we assumed
regulation does not take place (g.R = false).

To evaluate the quality of the learned CRMs, we tested whether they captured some characteristics
that are specific to the regulated genes. To this end, we performed leave-one-out experiments, where in
each experiment we learned a CRM using all the genes except for one, and then used the learned CRM
model to compute the probability that the held-out gene is regulated by the CRM. If the CRM is indeed
specific to the regulated genes, then regulated genes that are held-out should receive a higher probability
for being regulated than the held-out genes that were selected at random. We measured this by computing
the classification margin: The largest difference between the fraction of held out regulated genes whose
regulation probability is above some threshold t and the fraction of held-out nonregulated genes whose
regulation probability is above t , for different values of t . To evaluate the significance of the margins
we obtained, we compared them to those obtained on 100 datasets, in which random yeast genes were
assigned random labels (50 regulated and 50 nonregulated).

We detected significant CRMs in 11 out of our 25 sets (p < 0.01). These CRMs are summarized in
Table 1. Since each input gene set is the intersection of the targets of two TFs, we expect the CRM to

1Similar results were obtained for other settings to the window size and the amount of overlap between windows.
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Table 1. Significant CRMs Discovered in Yeast (p < 0.01)a

%
TF pair Margin Known motifs Predicted motifs correct

FHL1, RAP1 0.654 ACACCCATACATTT (RAP1) AATGTATG, CCATACAT (RAP1) 1/1
FHL1, YAP5 0.637 — ATGTAAGG, CCGTACAT —
SWI4, SWI6 0.58 TTTTCGCG (SWI4), ACGCGT (SWI6) TTTTCCCG (SWI4), AACGCGAA (SWI6) 2/2
MBP1, SWI6 0.535 ACGCGTnA (MBP1), ACGCGT (SWI6) GACGCGTA (MBP1), CGACGCGA (SWI6) 2/2
ACE2, SWI5 0.505 GCTGGT (ACE2), KCGTGR (SWI5) ACACACACACA 0/2
FKH2, MCM1 0.48 TTGTTTACST (FKH2) CCCTTTTC (MCM1), AGTAAACA 1/2

TTWCCCnWWWRGGAAA (MCM1)
RAP1, YAP5 0.448 — ATTTATGG, TCCATCAC —
NDD1, SWI4 0.447 TTTTCGCG (SWI4) TGTGCGTG, CACTCACAC 0/1
GAT3, YAP5 0.428 — CTCAACTA, CTATCTGA —
NRG1, YAP6 0.414 — ATACGAAA, GATAGGCA —
GAT3, PDR1 0.4 CCGCGG (PDR1) AAGCGGCTGA (PDR1), TCGTTGCTC 1/1

aFor each module, shown are the two TFs that putatively regulate the genes in each input set, their binding site consensus, the
consensus of the learned motifs, and the correspondence between the known motifs and learned ones. We considered two consensus
sequences as matching, if one was a subsequence of the other with at most two mismatches.

consist of the binding sites for the corresponding TFs. Thus, we further validated our learned CRMs by
comparing the consensus sequence of their motifs to their consensus according to Kellis et al. (2003).
Our learned motifs matched the known ones very well, recovering 7 out of the 11 known motifs. On four
additional sets, our method produced CRMs that were at the 0.05 significance level. For the other 10 sets,
we did not discover a significant CRM. This may be explained by the small size of the gene sets (most
sizes ranged between 25 and 30) and by the fact that multifactorial regulation does not necessarily involve
modular structures. Overall, the results on the location dataset demonstrate the ability of our method to
detect true signals in real data.

We also applied the variant of our approach that searches for motif combinations but ignores the spatial
information to this data. Our goal was to see whether such an approach can miss true signals also on real
data and not only on simulated data. Interestingly, this method managed to capture most of the combinations
that were previously discovered, with one important omission: No significant CRM was found on the set
of genes that are bound by FKH2 and MCM1, a known true positive (Kumar et al., 2000).

4.3. Cis-regulatory modules in human

Discovering cis-regulatory information in human is hard compared to yeast, as genes are typically
regulated by a combination of several TFs and the sequence regions involved in the regulation are often
farther from the transcription start site. We tested whether our method, which is designed for discovering
these more complex regulatory signatures, can detect true CRMs in human. As the input gene sets, we used
sets of genes that are known to be involved in the same process according to the GO database (Ashburner
et al., 2000). We hypothesized that such sets are likely to be regulated by several TFs and thus their
upstream regions might contain a CRM. Specifically, we extracted all GO annotations with 25–150 genes
and applied our method to each of the 381 such annotations, using 200 bp windows with 100 bp overlap
between windows, and 1,000 bp upstream region for each gene.2 For each GO process category, we treated
its member genes as regulated by a common CRM (g.R = true) and selected 100 random genes to serve
as a negative set (g.R = false).

As few CRMs are known in human, we evaluated the quality of the CRMs that we learned using the
leave-one-out procedure described above. For each CRM, we measured the classification margin of its
leave-one-out experiment and compared it to the classification margin obtained on 100 sets of random
human genes. Overall, we found 83 significant CRMs, spanning 71 GO categories (p < 0.01), where
46 of these CRMs consisted of two motifs, and 37 consisted of three motifs, for a total of 203 motif

2We experimented with several parameter settings. The choice of 200 bp windows with 100 bp overlap gave the
best results, though other similar settings yielded similar results.
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FIG. 4. Summary of the 83 significant CRMs (p < 0.01) that we learned on sets of human promoters, sorted by
the classification margin (y-axis) obtained for each CRM in leave-one-out experiments. The x-axis indicates the GO
category that was used as the input gene set when learning the CRM. In cases where one or more of the motifs that
we learned for the CRM matched a known motif, we list the latter above the bar of the corresponding CRM. The
dashed black line indicates the best classification margin obtained from applying our method to 100 sets of random
human genes and, thus, corresponds to a p-value of 0.01.

instances. We matched this list of motifs against a list of 414 known motifs from Wingender et al. (2001),
using the comparison method of Pietrokovski (1996). Out of the 203 motif instances that we learned,
54 corresponded to known motifs, spanning 36 distinct motifs. The leave-one-experiments, combined with
the recovery of known motifs, provide strong evidence that our method indeed detected a large number of
putatively true CRMs in human. A summary of all the significant CRMs that we found, including the GO
category that was used as input and the known motifs that were recovered, is shown in Fig. 4.

A more detailed inspection of our results showed many GO classes for which at least one of the motifs
that we learned was known in the literature to be bound by a TF that regulates the genes associated with

FIG. 5. Visualization of the two-motif CRM that we learned on genes that belong to the “regulation of CDK activity”
class. Shown are the 1,000 bp upstream regions of all 28 genes that are assigned to this annotation according to GO.
The occurrences of the two motifs in each upstream region are shown as red (NKX6 motif) and black (novel motif)
rectangles, where we highlighted (blue rectangle) all 13 genes in which the two motifs occurred within 200 bp of each
other in an upstream region.
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that class. For example, we learned a significant CRM for protein folding genes, in which one of the motifs
matched the binding site model for HSF (heat shock factor), a known activator of protein folding genes
under stress and heat shock conditions. As another example, we learned a significant CRM on a set of
mitochondrial membrane genes, in which one of the motifs matched the GATA PSSM. Indeed, the GATA
TF is known to induce mitochondrial membrane genes. We also inspected the learned CRMs visually and
found that they indeed consisted of motifs whose occurrences were close to each other in the upstream
regions of the regulated genes, whereas these motifs did not occur very often in the nonregulated genes.
An example is shown in Fig. 5 for the CRM learned from the “regulation of CDK activity” class. As can
be seen, for this category, 13 of the 28 genes contain the CRM. In contrast, this CRM appears in only
4 of the 100 nonregulated genes (data not shown). As further support for this CRM, one of the motifs
composing this CRM matches the binding site model for NKX6, a regulator of insulin biosynthesis, which
also has some known role in regulating cyclin dependent kinase (CDK) genes.

CONCLUSIONS

In this paper, we have presented a novel probabilistic model for the mechanism of cis-regulation,
which captures many aspects of this process, including the presence of multiple binding sites for multiple
transcription factors in short DNA sequences. We presented an algorithm to learn this model from data,
which allows us to predict cis-regulatory modules and their component motifs using only the raw sequence
data as input. Our results demonstrated the ability of our method to find known signals in simulated data
and in yeast and showed its utility for detecting cis-regulatory modules in human.

There are several directions for refining and extending our approach. First, our model requires a specifi-
cation of the sequence windows in which we expect to find the CRM. We are now working on modifications
to the model that will treat the entire upstream region as one sequence, but still bias the search toward
finding motifs whose occurrences cluster together. Second, we are exploring the use of our approach as
part of a richer probabilistic framework that combines gene expression measurements (Segal et al., 2003).
Finally, in some cases, we did not detect significant CRMs. While some of these may be due to limita-
tions of our approach, others may be due to different regulation mechanisms that depend on more subtle
sequence signals. Understanding the reasons for not detecting modules in such cases may reveal novel
characteristics of cis-regulation.
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