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Paralleling the diversity of genetic and protein activities,

pathologic human tissues also exhibit diverse radiographic

features. Here we show that dynamic imaging traits in non-

invasive computed tomography (CT) systematically correlate

with the global gene expression programs of primary human

liver cancer. Combinations of twenty-eight imaging traits can

reconstruct 78% of the global gene expression profiles,

revealing cell proliferation, liver synthetic function, and

patient prognosis. Thus, genomic activity of human liver

cancers can be decoded by noninvasive imaging, thereby

enabling noninvasive, serial and frequent molecular profiling

for personalized medicine.

Since Roentgen produced the first radiograph in 1895 (ref. 1),
scientists and clinicians have used noninvasive imaging to study the
physical and structural composition of living matter. Assessing the
genetic and biochemical makeup of living tissue through noninvasive
imaging is a key goal of current research. Recent development of
genomic and proteomic methods have enabled molecular profiling of
biological specimens by simultaneously revealing the expression level
of thousands of genes and proteins. Gene expression patterns of cancer
can reveal its etiology, prognosis and response to therapy2–4. However,
current methods of molecular profiling require invasive surgeries for
tissue procurement and specialized equipment, thus limiting their
routine use. Moreover, current profiling methods provide only single
snapshots in time because they are destructive; cells must be disin-
tegrated to extract nucleic acids or proteins for analysis. Human
tissues also exhibit diverse distinctive traits on noninvasive radio-
graphic images, many of which currently have no known significance
(Fig. 1a). Because imaging traits of tissues reflect the dynamic and
physiologic interplay of parenchymal cells, blood vessels and stroma,
we reasoned that imaging traits may be used to predict gene expres-
sion patterns in human cancers.

We hypothesized that the global gene expression patterns of human
cancers may systematically correlate with their dynamic imaging
features. To relate gene expression to imaging, we needed to first

define ‘units of distinctiveness’, termed ‘traits’, from qualitative imag-
ing features, and likewise define coherent patterns of variation from
gene expression profiles. Second, imaging traits are likely to correlate
with gene expression patterns in a complex manner, and methods of
relating imaging to gene expression need to account for combinatorial
and conditional logical relationships such as AND and OR.

To address these challenges of relating gene expression to imaging,
we followed a three-step strategy to create an ‘association map’
between imaging features on three-phase contrast enhanced CT
scans and gene expression patterns of 28 human hepatocellular
carcinomas (HCC)4 (Fig. 1b). First, we defined and quantified 138
distinctive imaging traits present in one or more HCCs. To identify the
most informative traits, we filtered traits based on their frequency and
prominence in the data, interobserver agreement between two
radiologists, and independence from other traits as determined by
Pearson correlation among the traits (r ¼ 0.9). Thirty-two imaging
traits were extracted by these criteria and used for subsequent analysis
(Supplementary Table 1 online). For instance, many tumors displayed
channels of radio-dense signal within certain tumors on the arterial
phase of the CT scan5, and this trait was termed ‘internal arteries’
(Fig. 1a). Second, we adapted the module networks algorithm6 to
systematically search for associations between expression levels of
6,732 well-measured genes determined by microarray analysis4

and combinations of imaging traits. The algorithm identifies
groups of genes, termed modules, with coherent variation in expres-
sion across multiple samples. The algorithm also identifies combina-
tions of imaging traits that can explain the expression levels of gene
modules, where each combination explains the expression level of
one gene module. Third, we validated the statistical significance of
the association map by comparison with permuted data sets, and
by testing the prediction of the association map in an independent set
of tumors.

The association map of imaging traits and gene expression revealed
that a large fraction of the gene expression program can be recon-
structed from a small number of imaging traits (Fig. 2a,b). The
expression variation in 6,732 genes was captured by 116 gene modules,

©
20

07
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
b
io
te
c
h
n
o
lo
g
y

Received 8 January; accepted 24 April; published online 21 May 2007; doi:10.1038/nbt1306

1Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. 2Dept. of Radiology and 3Dept. of Surgery, University of
California at San Diego, 200 W. Arbor Dr., San Diego, California 92103, USA. 4Dept. of Radiology, University of Hong Kong, 21 Sasson Road, Pokfulam, Hong Kong DAR,
China. 5Program in Epithelial Biology, 269 Campus Dr., Stanford, CCSR2155c, California 94305, USA. 6Dept. of Biochemistry, 279 Campus Dr., Stanford, California
94305, USA. 7Dept. of Radiology, University of Southern California, 1200 N. State St., Los Angeles, California 90033, USA. 8Dept. of Biopharmaceutical Science,
University of California at San Francisco, 513 Parnassus Ave., San Francisco, California 94143, USA. Correspondence should be addressed to M.D.K. (mkuo@ucsd.edu) or
H.Y.C. (howchang@stanford.edu).

NATURE BIOTECHNOLOGY ADVANCE ONLINE PUBLICATION 1

L E T T E R S



each of which was associated with specific combinations of imaging
traits. For each module, the presence or absence of combinations of
imaging traits explained the aggregate expression level of genes within
the module (Fig. 2a). The combinations of relevant imaging traits are
depicted in decision trees: each split in the tree is specified by variation
of an imaging trait; each terminal leaf in the tree is a cluster of samples
that share a similar expression pattern of module genes. Thus, the
association map allowed us to reconstruct the relative expression level
of a gene (by mapping it to a module) in a given HCC sample (by
mapping it to a cluster). Across all 116 gene modules capturing 6,732
genes in our model, the difference in the level of expression of member
genes from their cognate module averages is 1.36- ± 1.33-fold (mean ±
s.d.). Thus, the expression level of individual genes can be recon-
structed from imaging features with an average deviation of about
twofold, within the experimental determination level allowed by
microarray analysis.

Notably, the combinations of only 28 imaging traits were sufficient
to reconstruct the variation of all 116 gene modules. Only nine traits
were sufficient to reconstruct the expression patterns of 50% of the
transcriptome, and the model plateaus to 480% of the transcriptome
with 423 traits (Fig. 2b). For each gene, the number of traits needed
to predict its variation is on average three and no more than four in
any instance. The association of imaging traits and gene expression
was highly significant by several independent statistical criteria.
Specification of the entire module network involved 355 splits based
on imaging traits. The average gene expression levels between two
sides of each split was significantly different in 299 of 355 splits
(P o 0.05 after a Bonferroni correction for multiple hypotheses),
accounting for 5,282 of 6,732 input genes (78.5%). Comparison of the
observed association map of imaging traits and gene expression with
maps derived from data sets with permuted sample labels confirmed
that it was highly unlikely that the predictive power of imaging traits
for expression patterns was due to chance alone. The log-likelihood
was –18 per microarray, compared to only –23 ± 0.1 expected by
chance (ten permutations; P o 10–50). Thus, the variation in gene
expression was densely correlated with a small number of imaging

traits. Once identified, such ‘coding’ of ima-
ging traits can be used to translate visual
images into global gene expression programs.

To further validate the association map of
imaging traits and global gene expression, we
tested the predictive power of the map in an
independent group of 19 prospectively col-
lected patients with HCC. We predicted the
global gene expression pattern of these 19
tumors based on the patients’ preoperative
CT scans, and then performed microarray
analysis on their resected tumors to deter-
mine whether our predicted gene expression
profiles were correct. We found that 71 of the
116 gene modules, comprising 4,996 out of
6,732 (74%) genes of the transcriptome
under consideration, were significantly pre-
dicted by their cognate imaging traits, that is,
the combinations of imaging traits predicted
for each module split the module-genes into
distinct patterns of expression (P o 0.01,
Student’s t-test; Supplementary Table 2
online). A separate permutation test also
confirmed the strong link between imaging
traits and global gene expression. These

results provide additional support that the association map of imaging
traits and gene modules is robust and can be used to predict the global
expression profiles of a large fraction of the transcriptome in inde-
pendent sets of patients.

Imaging traits predictive of the expression level of specific genes are
directly revealed using the association map, and the potential physio-
logic significance of many imaging traits can be inferred from their
associated genes. We found that the distribution of genes into modules
defined by imaging traits was not random, but was highly enriched for
specific and diverse biological functions and processes. Comparison of
gene membership in modules versus the published Gene Ontology
annotation7 revealed significant overlaps (P o 0.05, FDR o 0.05)
(Fig. 2c), allowing many key physiologic properties of tumors to be
gleaned from CT images. For example, three image traits recon-
structed the expression level of module 697, which is highly enriched
for genes involved in cell proliferation, including PCNA, CCNA2,
MCM5, MCM6 and GMNN (Fig. 3a). In addition, the expression level
of VEGF, an important driver of tumor angiogenesis and target of the
approved antibody therapeutic bevacizumab8 (Avastin), covaries with
these cell cycle genes and is predicted by the same imaging traits
(Fig. 3a). This association immediately suggests a method for non-
invasively delineating a molecularly distinct subset of tumors for a
targeted therapeutic strategy. The expression of liver synthetic enzymes
in HCC reflects the extent of tumor dedifferentiation9; this informa-
tion is evident in module 595, which details the expression level of
ALB, PKLR, TFR2, as well as revealing clotting function (F2, F5, F10),
and detoxification activity (GSTO1, CYP27A1, EPHX2) (Fig. 3b).
Conversely, identity of genes in a module can reveal the physiologic
basis of an imaging trait. The imaging trait ‘tumor margin score,
minimum’ denotes tumors that show an ill-defined transition zone
between tumor and surrounding liver tissue; we found that the
presence of this trait was associated with elevated expression of a
group of genes associated with extracellular matrix remodeling, such
as MMP2, MMP7, COL3A1, COL6A2, and THBS1 and THBS2
(Fig. 3c). Several of these genes, notably MMP2 (refs. 10,11)
and THBS1 and THBS2 (refs. 1,12), are known to increase tumor

©
20

07
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
b
io
te
c
h
n
o
lo
g
y

Module network
procedure

Data selection (6,732 genes)

Image trait selection

138 traits

Expression dataImage traits

Gene partition

Clustering

Functional modules

Pre-
processing

Graphic presentation

Gene
reassignment
to modules

Classification
program learning

Annotation
analysis

Validation in
independent cohort of

patients
Post-processing

Modules

Im
ag

e
tr

ai
ts

A
nn

ot
at

io
ns

Imaging classes

G
en

es

Internal arteries

Hypodense halo

Texture heterogeneity

a b

Figure 1 Linking imaging traits and global gene expression. (a) Examples of imaging traits in HCC.

(b) Strategy for constructing an association map between imaging traits and gene expression.
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invasiveness into surrounding stroma, which may lead to the poor
demarcation of tumor margins on CT images.

The association map also enabled systematic mapping of a pre-
determined group of genes to their corresponding imaging traits.
Previously, a group4 working with the same tumors imaged in this
study identified expression variation in a group of 91 genes that was
associated with microscopic venous invasion, a well-established sign of
poor prognosis9 that is extremely difficult to predict using conven-
tional imaging methods in the absence of gross venous invasion. The
‘venous invasion signature’ comprises genes involved in cell prolifera-
tion (CDK4, CDC20, MCM5) and matrix invasion (ADAMTS1,
MMP14, SPARCL1)—genes known to be induced in other HCC
data sets and indeed in many types of cancers13. We found that the
91 genes in the ‘venous invasion signature’ were enriched in seven

modules and associated with two predominant imaging traits—the
presence of ‘internal arteries’ and absence of ‘hypodense halos’ (Fig. 4a
and Supplementary Table 3 online). Therefore, we tested whether this
pair of imaging traits, as observed during the preoperative CT scan,
predicted the occurrence of microscopic venous invasion by histologic
analysis. In 30 patients with HCC, tumors with this combination of
imaging traits had a 12-fold increased risk of microscopic venous
invasion (P ¼ 0.004). Importantly, the predictive value of the two-trait
predictor of venous invasion was validated in an independent set of
32 patients that were not used for training the association map
(Fig. 4a, P ¼ 0.03), despite the fact that CT imaging, patient
characteristics and even tumor sizes were not exactly matched with
those of the training set. Moreover, the presence of the trait ‘internal
arteries’ in the preoperative CT scan of HCCs was a significant
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Figure 2 An association map of imaging traits and global gene expression. (a) Overview of the association map. Each column is a sample; each row is a
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(P o 0.05) univariate predictor of overall survival in both groups of
patients (Fig. 4b). Thus, the association map can identify novel
imaging traits corresponding to gene expression signatures and
provide useful information to guide clinical decision making.

In summary, we show that much of the global gene expression
profiles of liver cancer were systematically correlated with their
imaging features. The systematic association
between imaging traits and gene expression
allowed useful inference from both direc-
tions. On the one hand, the association
map identified biological processes, based
on specific gene expression programs, which
underlie specific imaging traits. On the other
hand, the association map enabled the use of
imaging traits to reconstruct the global gene
expression programs of cancer, thereby creat-
ing a noninvasive molecular portrait of the
tumor (Fig. 3). We illustrate the utility of this
approach by identifying and validating a two-
trait predictor of venous invasion in HCC
(Fig. 4). Moreover, the ‘internal arteries’
trait that emerged from this analysis was a
significant predictor of survival in two
independent groups of patients. These results
demonstrate that existing imaging technology
may be used to reconstruct the molecular
anatomy of human liver cancer and poten-
tially other diseases in a noninvasive fashion.
Although our study involved two small sets
of liver cancers, our success with these
limited samples illustrates the robustness of
the method.

Our algorithm for associating imaging
features and gene expression is generalizable,

and in principle may be applied to any disease
state and imaging modality (such as positron
emission tomography (PET), magnetic reso-
nance imaging (MRI), or other imaging meth-
ods). However, an important caveat is that
HCCs are generally large and well-perfused
tumors, which permit detailed radiographic
examination using computed tomography, a
modality widely used in daily clinical practice.
For smaller tumors or lesions of other disease
states, CT scans may not be suitable and other
imaging modalities, such as MRI or PET, may
need to be employed. In the current study, we
analyzed imaging traits as features over the
entire tumor and systematically correlated
them with mRNA levels extracted from
resected whole tumors. Our method offers
the possibility to identify imaging features
that predict region-specific gene expression
signatures within the tumor in the proper
anatomic context of the patient. This develop-
ment will require potentially higher reso-
lution imaging modalities, targeted tissue
specimens from radiographically diverse
regions of the same or different tumors, and
a larger number of samples to account for an
additional level of multiple hypothesis testing.

We and others have shown that gene expression signatures, each
comprised of dozens to hundreds of genes, can significantly improve
the diagnostic classification, prognostication and prediction of ther-
apeutic response in cancer2–4,14. For instance, in breast cancer, a
21-gene assay, termed Oncotype Dx, is commercially available to deter-
mine prognosis and predict response of primary breast tumors to
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chemotherapy15,16. Similarly, a 70-gene signature17,18 is undergoing a
multicenter clinical trial in Europe as the basis of undergoing adjuvant
chemotherapy in primary breast cancer and is also commercially sold as
Mammaprint. Gene expression signatures that can predict prognosis or
therapeutic response in lung cancer19, leukemias20 and prostate
cancers21 have also been identified. Microarray analysis is also standard
practice in many ongoing clinical trials in order to discover potential
pharmacogenomic links between drugs and patient response. These
activities suggest that gene expression profiling will become important
for daily clinical practice in the near future. Our method potentially
provides gene expression profiling that is noninvasive (and therefore
with no risk of pain, infection or complications that accompany tissue
procurement for microarray analysis), fast, repeatable and in the native
anatomic context of the patient. Just as radiographic exams (CT, MRI,
angiography) have replaced physical diagnosis in many clinical settings
as the gold standard (e.g., the diagnosis of HCC in patients with a history
of hepatitis virus infection), gene expression profiling by noninvasive
imaging may supplement histologic examination for cancer diagnosis.
In the future, canonical association maps constructed from large
representative series of tumors may enable routine noninvasive diagnosis
of genetically heterogeneous tumors, reveal their prognosis and allow
serial profiling of tumors during therapy. Finally, this type of imaging-
based molecular profiling could speed up the development of persona-
lized medicine.

METHODS
Imaging traits. We defined 138 distinct imaging traits that were present in

at least one tumor sample and were scored across all tumor samples. Traits were

selected a priori based on intrinsic radiological interest (e.g., internal arteries

and hypodense halos). Traits were also filtered based on their frequency and

prominence in the data, interobserver agreement and independence from other

traits based on Pearson correlation (cut-off value of 0.9). We used 32 imaging

traits as input in the Bayesian model, and 28 of 32 were found to be informative

of gene expression (Supplementary Table 1).

Microarray data. Training set: gene expression profiles4 of 28 imaged

HCCs were downloaded from Stanford Microarray Database (http://

genome-www5.stanford.edu/). Data from array elements that had hybridization

signals 1.5 times the background signal in both Cy5 and Cy3 channels and

present in 70% of samples were centered by means across samples. Data from

replicate probes representing the same gene (as determined by Locus Link ID)

were averaged. We used the 6,732 genes that met these criteria for data quality

for subsequent analysis. Validation set: 19 independent HCCs were imaged and

subsequently excised and extracted for total RNA. Tumor RNA was amplified,

labeled with Cy5, and competitively hybridized with Cy3-labeled reference RNA

to Stanford cDNA microarrays, as previously described4.

Module network. We adapted and applied the module network procedure that

we previously developed6 to construct an association map between imaging

traits and gene expression profiles. The module network procedure takes as

input gene expression data and a set of potential regulatory input, and attempts

to partition the expression data into distinct and mutually exclusive modules,

such that the gene assigned to each module can be well predicted by a small

decision tree of regulatory inputs. In our application, we set the regulatory

inputs to be the real-valued imaging traits and applied them to the expression

data described above.

Validation of module network in independent set of patients. We predicted

the global gene expression program of 19 prospectively collected, independent

HCC samples based on their preoperative three-phase CT images. By compar-

ing the global gene expression program predicted by CT images according to

our previous model to the actual microarray profiles that we measured, we

found a 74% validation rate, which is notable considering that the patients and

microarray platforms of the training and validation sets were not the same.

Specifically, in our training set, we identified 28 imaging traits that predicted

the variation of expression in 5,282 of 6,732 (78%) genes in the transcriptome.

We took the imaging trait corresponding to the top split in each gene module,

and tested whether variation in that imaging trait also predicted variation

of expression in the corresponding gene module in the new validation set

of tumors. We found that 71 of the 116 gene modules, comprising 4,996 out

of 6,732 (74%) genes of the transcriptome under consideration, were

significantly predicted by their cognate imaging traits (P o 0.01, Student’s

t-test). The gene modules, their cognate imaging traits, and the P-values of the

difference in gene expression as dictated by the variance in imaging are listed in

Supplementary Table 2.

In addition, we performed a permutation analysis to more rigorously

test the association between imaging traits and gene expression in the validation

set. We permuted the values of the imaging trait across the new 19 arrays

100 times for each module, and compared the P-value of the gene module

variation dictated by the real imaging trait to that obtained in the 100

permutations. Note that the 19 samples in the validation set have substantially

less power than our training set, and are thus only able to validate the

strongest relationships identified in the original training set of 28 samples.

Nevertheless, the imaging trait–gene module pairs identified by our model still

have outstanding P-values for many gene modules. 1,567 out of 6,732

transcribed genes (23%) were predicted by imaging traits that beat more than

95% of the permuted data (Po 0.05). These results provide further confidence

that the association map of imaging traits and gene modules is highly robust

and can be used to predict the expression level of thousands of genes in

independent sets of samples.

Module enrichment in functional annotations. Significance of overlap

between genes in modules and annotations in GO, GeneMap and KEGG are

calculated by comparison to the degree of overlap expected by chance

alone using the hypergeometric distribution. We account for multiple

hypothesis testing by calculating a false discovery rate and present results

with FDR o 0.05.

Mapping venous invasion genes to imaging traits. To find imaging traits that

correspond to the set of 91 genes associated with venous invasion4, we

identified seven modules that are significantly enriched for these gene using

the hypergeometric distribution as described above. The associated imaging

trait trees of the seven modules were analyzed (Supplementary Table 3), and

two traits, internal arteries and halos, were found to be overrepresented among

the top splits. To identify the consensus threshold of applying these traits for

this purpose, we calculated the P-value weighted average of the splits from the

seven image trait trees. The consensus thresholds were used for the imaging

trait decision tree of Figure 4a.

Clinical data analysis. Microscopic venous invasion status on histologic

analysis was available for 30 patients in the training set and 32 patients in

the test set. Within each data set, patients were partitioned into two groups

based on the two trait decision trees (‘internal arteries’ and ‘hypodense halos’

on the CT scan, Fig. 4a). Significance of association between the two trait

imaging groups and histologic venous invasion was calculated using two-by-

two contingency tables and a chi-squared test. Overall survival data were

available for 23 patients in the training set and 32 patients in the test set; only

patients with tumor-free margins after HCC resection were used in this

analysis. Within each data set, patients were partitioned based on the presence

or absence of the ‘internal arteries’ trait on the CT scan, and survival analysis by

the method of Kaplan and Meier for the two groups of patients was

implemented in Winstat (R. Fitch software).

URLs. The 116 networks linking imaging traits to specific gene modules can be

interactively searched at http://genie.weizmann.ac.il/pubs/imaging06/. Micro-

array data of the newly generated validation set of HCCs can be downloaded at

Stanford Microarray Database (http://genome-www5.stanford.edu/) and GEO

(http://www.ncbi.nlm.nih.gov/geo/).

Requests for materials. M.D.K. (mkuo@ucsd.edu) and H.Y.C. (howchang@

stanford.edu).

Note: Supplementary information is available on the Nature Biotechnology website.
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