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Abstract 

 

We propose InSite – a computational method that integrates high-throughput protein and 

sequence data to infer the specific binding regions of interacting protein pairs.  We 

compared our predictions with binding sites in Protein Data Bank and found significantly 

more binding events occur at sites we predicted.  Several regions containing disease-

causing mutations or cancer polymorphisms in human are predicted to be binding for 

protein pairs related to the disease, which suggests novel mechanistic hypotheses for 

several diseases. 

 

 

Background 

Much recent work focuses on generating proteome-wide protein-protein interaction maps 

for both model organisms and human, using high-throughput biological assays such as 

affinity purification [1-4] and yeast two-hybrid [5-10]. However, even the highest-quality 

interaction map does not directly reveal the mechanism by which two proteins interact.  

Interactions between proteins arise from physical binding between small regions on the 

surface of the proteins [11].  By understanding the sites at which binding takes place, we 

can obtain insights into the mechanism by which different proteins fulfill their role.  In 

particular, when mutations alter amino acids in binding sites they can disrupt the 

interactions, often changing the behavior of the corresponding pathway and leading to a 

change in phenotype.  This mechanism has been associated with several human diseases 

[12].  Thus, a detailed understanding of the binding sites at which an interaction takes 

place can provide both scientific insight into the causes of human disease and a starting 

point for drug and protein design. 

 

We propose an automated method, called InSite (for Interaction Site), for predicting the 

specific regions where protein-protein interactions take place.  InSite assumes no 

knowledge of the 3D protein structure, nor of the sites at which binding occurs. It takes as 

input a library of conserved sequence motifs [13, 14], a heterogeneous data set of protein-



protein interactions, obtained from multiple assays [2, 4, 9, 10, 15, 16], and any available 

indirect evidence on protein-protein interactions and motif-motif interactions, such as 

expression correlation, Gene Ontology (GO) annotation [17], and domain fusion. It 

integrates these data sets in a principled way and generates predictions in the form of 

“motif M on protein A binds to protein B”.  A key difference between InSite and previous 

methods [18-20] is that InSite makes predictions at the level of individual protein pairs, 

in a way that takes into consideration the various alternatives for explaining the binding 

between this particular protein pair.  By contrast, other methods predict affinities between 

motif types; these predictions are independent of the proteins on which the motifs occur. 

Thus, InSite may give the same motif pair different binding confidences in the context of 

explaining different protein-protein interactions.   To our knowledge, InSite is the first 

method that does protein specific binding site predictions.  This capability allows us to 

use InSite to understand specific disease-causing mechanisms that may arise from a 

mutation that disrupts a protein-protein interaction.  InSite also provides a novel 

framework for integrating evidence from multiple assays, some of which are noisy and 

some of which are indirect.  Unlike other methods, our approach uses all available 

evidence, and does not assume the existence of a large data set of gold positives. 

 

InSite is based on several key assumptions.  The first is that protein-protein interactions 

are induced by interactions between pairs of high-affinity sites on the protein sequences. 

Second, we assume that most binding sites are covered and characterized by motifs or 

domains – conserved patterns on protein sequences that recur in many proteins.  (For 

simplicity, we use the word “motif” to refer to both motifs and domains, except in cases 

where we wish to refer specifically to domains.)  Although an approximation, this 

assumption is supported in the literature, as interaction sites tend to be more conserved 

than the rest of the protein surface [21].  These motifs can correspond to any conserved 

pattern recurring on protein sequences, whether short regions or entire domains (Figure 

S1 in Additional data file 2).  Finally, we assume that the same motifs participate in 

mediating multiple interactions.  Therefore, we can study a motif’s binding affinity with 

other motifs by examining multiple protein-protein interactions that involve the motif. 

 



InSite is structured in two phases.  In the first phase, the algorithm searches for a set of 

affinity parameters between pairs of motif types that provides a good explanation of the 

interaction data, roughly speaking: (a) every pair of interacting proteins contains a high-

affinity motif pair, (b) non-interacting proteins do not contain such motif pairs, and (c) 

motif pairs with supporting evidence such as from domain fusion should be more likely 

to have high affinity.  There may be multiple assignments to the affinity parameters that 

explain the data well; our method tends to select sparser explanations, where fewer motif 

pairs have high affinity, thereby incorporating a natural bias towards simplicity.  A 

simple example of this phase is illustrated in Figure 1; here, the observed interactions are 

best explained via high affinity for the motif pair a,d, explaining the interactions P1-P3 

and P1-P4, and high affinity for the pair b,e, explaining the interactions P1-P5 and P2-P5.  

By contrast, the motif pair c,d is not as good an explanation, because the motif pair also 

appears in the non-interacting protein pair P3, P5.  We note that the motif pair a,c is also a 

candidate hypothesis, as it predicts the interactions P1-P3 and P1-P5 and does not 

incorrectly predict any other interaction.  However, it leaves the interaction P1-P4 

unexplained, therefore leading to a less parsimonious model that also contains the motif 

pair a,d. 

 

A set of estimated affinities provides us with a way of predicting, for each pair of 

proteins, which motif pair is most likely to have produced the binding. In the second 

phase, we use this ability to produce specific hypotheses of the form ‘Motif M on protein 

A binds to protein B’.   In a naïve approach, we can simply take the most likely set of 

binding sites for the estimated set of affinity parameters.  However, in some cases, there 

may be multiple models that are equally consistent with our observed interaction pattern, 

but that give rise to different binding predictions.  In the second phase of InSite, we 

therefore assess the confidence in each binding prediction by “disallowing” the A-
B 

binding at the predicted motif M, re-estimating the affinities, and computing the overall 

score of the resulting model (its ability to explain the observed interactions).  The 

reduction in score relative to our original model is an estimate of our confidence in the 

prediction.  This phase serves two purposes: it increases the robustness of our predictions 

to noise, and also reduces the confidence in cases where there is an alternative 



explanation of the interaction using a different motif.   For example, in Figure 1, the 

prediction that ‘motif d on P4 binds to P1’ has higher confidence, because d is the only 

motif that can explain the interaction.  Conversely, the prediction that ‘motif d on P3 

binds to P1’ has lower confidence, because the motif pair a,c can provide an alternative 

explanation to the interaction.  The prediction that ‘motif e on P5 binds to P2’ also has 

high confidence: although interaction via binding at b,c would explain the interaction, 

making b,c a high-affinity motif pair would contradict the fact that P2 and P3 do not 

interact. 

 

We provide a formal foundation for this type of intuitive argument within an automated 

procedure (Figure 2), based on the principled framework of probability theory and 

Bayesian networks [22].  At a high level, the InSite model contains three components, 

which are trained together to optimize a single likelihood objective.  The first component, 

inspired by the work of Deng et al. [20, 23] and Riley et al. [20, 23], formalizes the 

binding model described above, whereby motif pairs have binding affinities, and an 

interaction between two protein pairs is induced by binding at some pair of motifs in their 

sequence. The second and third components, novel to our approach, formulate the 

evidence models for protein-protein interactions and motif-motif interactions respectively. 

They address both the noise in high-throughput assays  [24, 25], and in the case of 

protein-protein interactions, the fact that many of the relevant assays are based on affinity 

purification, which detects protein complexes instead of the pairwise physical 

interactions that are the basis for inferring direct binding sites.  To integrate many assays 

coherently, InSite uses a naïve Bayes model [24, 26, 27], where the assays are a “noisy 

observation” of an underlying “true interaction”.   

 

Our entire model is trained using the expectation maximization (EM) algorithm in a 

unified way (see Methods; Figure S3 in Additional data file 2), to maximize the overall 

probability of the observed protein-protein interactions.  This type of training differs 

significantly from most previous methods that aggregate multiple assays to produce a 

unified estimate of protein-protein interactions.  These methods [27, 28] generally train 

the parameters of the unified model using only a small set of “gold positives”, typically 



obtained from the MIPS database [15].  This form of training has the disadvantages of 

training the parameters on a relatively small set of interactions, and also of potentially 

biasing the learned parameters towards the type of interactions that were tested in small-

scale experiments.  By contrast, the use of the EM algorithm allows us to train the model 

using all of the protein interactions in any data set, increasing the amount of available 

data by orders of magnitude, and reducing the potential for bias.  The same EM algorithm 

also trains the affinity parameters for the different motif pairs, so as to best explain the 

observed protein-protein interactions. 

 

These estimated affinities allow us to predict, for each pair of proteins, which motif pair 

is most likely to have produced the binding. In the second phase, we use these predictions, 

augmented with a procedure aimed at estimating the confidence in each such prediction, 

to produce specific hypotheses of the form ‘Motif M on protein A binds to protein B’.  In 

this phase, InSite modifies the model so as to enforce that binding between A and B does 

not occur at motif M.  We then compute the loss in the likelihood of the data, and use it as 

our estimate of the confidence in the binding hypothesis. 

 

As an initial validation of the InSite method, we first show that it provides high-quality 

predictions of direct physical binding for held-out protein interactions that were not used 

in training.  These integrated predictions, which utilize both binding sites and multiple 

types of protein-protein interaction data, provide high precision and higher coverage than 

previous methods.  As the primary validation of our approach, we compare the specific 

binding site predictions made by InSite to the co-crystallized protein pairs in the Protein 

Data Bank (PDB) [29], whose structures are solved and thus binding sites can be inferred.  

In our results, 90.0% of the top 50 Pfam-A domains that are predicted to be binding sites 

are indeed verified by PDB structures.   InSite significantly out-performs several state-of-

the-art methods:  In particular, only 82.0% of the top 50 predictions by Lee et al. [19] and 

80.0% of the top 50 predictions by Riley et al. [20] and of Guimaraes et al. [18] are 

verified in PDB.  We also examined the functional ramifications of our predictions.  If 

protein A interacts with protein B via the motif M on A, a mutation at motif M may have a 

significant effect on the interaction.  If the interaction is critical in some pathway, this 



mutation may result in a deleterious phenotype, which may lead to disease [30].  We 

applied InSite to human protein-protein interaction data, and considered those predicted 

binding motifs M that contain a mutation in the OMIM human disease database [31] or 

identified as a potential driver mutation  in the recent cancer polymorphism data [32].  

We then investigated the hypothesis that the mutation at M leads to the disease by 

disrupting the binding of the protein pair.  A literature search validated many of these 

disease-related predictions, whereas others are unknown but provide plausible hypotheses.  

Therefore, our predictions provide us with significant insights into the underlying 

mechanism of the disease processes, which may help future study and drug design. 

 

We have made our predictions and our code publicly available for download [33].  Our 

algorithm is general, and can be applied to any organism, any protein-protein interaction 

data set, and any type of motifs or domains. 

 

Results 

 

Overview 

We applied InSite to data from both S. cerevisiae and human.  For S. cerevisiae, we 

compiled 4,200 reliable protein-protein interactions as our gold standard and 108,924 

observations of pairwise protein-protein interactions from high-throughput yeast two-

hybrid assays of Ito and Uetz [9, 10] and assays of Gavin and Krogan that identify 

complexes [2, 4].  We also computed expression correlation and GO distance between 

every pair of proteins, data which have been shown to be useful in predicting protein-

protein interactions [34]. Altogether, these measurements involve 4,669 proteins and 

82,399 protein pairs.  We also constructed a set of fairly reliable non-interactions as our 

gold standard by selecting 20,000 random protein pairs [35], and eliminating those pairs 

that appeared in any interaction assay.  In the case of human, we used two sets of training 

data for our analysis.  First, we focused on high-confidence pairwise interactions, all of 

which were modeled as gold positive interactions.  These interactions were obtained both 



from high-quality yeast two-hybrid assays [6] and from the Human Protein Reference 

Database (HPRD), a resource that contains published protein-protein interactions, 

manually curated from the literature [36].  In the second case, we additionally 

incorporated into our evidence model the yeast two-hybrid interactions from Stelzl et al. 

[5] and the assay from Ewing et al. [37] that identifies complexes. Overall, we obtained 

12,411 protein interactions involving 2,926 proteins, and selected 18,745 random pairs as 

our gold non-interactions, as for yeast. 

 

The InSite method can be applied to any set of sequence motifs.  Different sets offer 

different trade-offs in terms of coverage of binding sites; we can estimate this coverage 

by comparing residues covered by a particular set of motifs to residues found to be 

binding sites in some interaction in PDB,  One option is Prosite motifs [14], where we 

excluded non-specific motifs, such as those involved in post-translational modification, 

which are short and match many proteins.  These motifs cover 9.6% of all residues in the 

protein sequences in our dataset (Figure S1a in Additional data file 2).  Of residues that 

are found to be binding sites in PDB, 37.8% are covered by these Prosite motifs.  This 

enrichment is significant, but many actual binding motifs are omitted in this analysis.  An 

alternative option is to use Pfam domains [38], which cover 73.9% of all the residues; 

however,  PDB binding sites are not enriched in Pfam (Figure S1b in Additional data file 

2).   Pfam-A domains (Figure S1c in Additional data file 2), which are accurate, human 

crafted multiple alignments, appear to provide a better compromise: PfamA domains 

contain only 38.1% of the residues in our dataset, but cover 70.3% of the PDB binding 

sites.  One regime that seems to work best, which is also used by Riley et al., is to train 

on all Pfam domains (providing a larger training set) and to evaluate the predictions only 

on the more reliable Pfam-A domains.  For each motif set, we used evidence from 

domain fusion and whether two motifs share common GO category as noisy indicators 

for motif-motif interactions [39, 40]. 

 

We experimented with different data sets and different motif sets.  In each case, we 

trained our algorithm on these data; then, for each interacting protein pair, we compute 



the binding confidences for all their motifs, and generate a set of binding site predictions, 

which we rank in order of the computed confidence. 

 

Predicting physical interactions 

The actual protein-protein interactions are mostly unobserved in our probabilistic model.  

However, we can compute the probability of interaction between two proteins based on 

our learned model, which integrates evidences on protein-protein interactions and motif-

motif interactions as well as the motif composition of the proteins.  As a preliminary 

validation, we first evaluate if InSite is able to identify direct physical interactions.  We 

compare our results to those obtained by using the confidence scores computed by Gavin 

and Krogan, which are derived from their TAP-MS assays and quantify the propensity of 

proteins to be in the same complex. Using standard ten-fold cross-validation, we divide 

our gold interactions and high-throughput interactions into ten sets; for each of ten trials, 

we hide one set and train on the remaining nine sets together with our gold non-

interactions.  We then compute the probability of physical interaction for each protein 

pair in the hidden set, and rank them according to their predicted interaction probabilities.  

We define a predicted interaction to be true only if it appears in our gold interactions, and 

false if it appears only in the high-throughput interactions; we then count the number of 

true and false predictions in the top pairs, for different thresholds.  Although this 

evaluation may miss some true physical interactions that appear in the high-throughput 

data set but not in our gold set, it provides an unbiased estimate of our ability to identify 

direct physical interactions.  We separately perform this procedure by ranking the 

interactions according to the scores computed by Gavin and by Krogan.  We also 

compared with a method that combines all evidences on protein-protein interactions in a 

naïve Bayes model where motifs are not used. 

 

Our results (Figure 3a) show that InSite is better able to identify direct physical 

interactions within the top pairs.  The area under the ROC curve are 0.855 and 0.916 for 

Prosite and Pfam respectively, while it is 0.806 for the naïve Bayes model, which 

integrates different evidences on protein-protein interactions without using any motifs. 

This shows the motif based formulation is better able to provide higher rankings to the 



reliable direct interactions (Figure 3a).  When comparing with Gavin’s and Krogan’s 

scores, our model covers more positive interactions because it integrates multiple assays.  

However, even if we restrict only to pairs appearing in a single assay, such as Gavin’s or 

Krogan’s, InSite (Figure 3b,c) is able to achieve better accuracy with either Prosite or 

Pfam.  These results illustrate the power of using both an integrated data set and the 

information present in the sequence motifs in reliably predicting protein-protein 

interactions.  A list of all protein pairs ranked by their interaction probabilities estimated 

by training on the full data set is available from our website. 

 

Predicting binding sites. 

The key feature of InSite is its ability to predict not only that two proteins interact 

directly, but also the specific region at which they interact.  As an example, we 

considered the RNA polymerase II (Pol II) complex, which is responsible for all mRNA 

synthesis in eukaryotes.  Its 3D structure is solved at 2.8A resolution [41], so that its 

internal structure is well-characterized (Figure 4a,b), allowing for a comparison of our 

predictions to the actual binding sites.  When using Pfam-A domains, the complex gives 

rise to 123 potential binding site predictions: one for each direct protein interaction in the 

complex and each motif on each of the two proteins.  Among the 123 potential 

predictions, 68 (55.3%) are actually binding according to the solved 3D structure.  We 

rank these 123 potential predictions based on our computed binding confidences.  All of 

the top 26 predictions are actually binding (Figure 4d).  As one detailed example (Figure 

4c), Rpb10 interacts with Rpb2 and Rpb3 through its motif PF01194.  We correctly 

predicted this motif as the binding site for the two proteins (ranked 3rd and 4th).  On the 

other hand, there are 9 motifs on the two partner proteins that could be the possible 

binding sites to Rpb10.  Among them, 4 are actually binding, and were all ranked among 

the top half of the total 123 predictions, while the other 5 non-binding motifs were ranked 

below 100th with low confidence score.  Overall, the 6 binding sites in this example all 

have higher confidence scores than the 5 non-binding sites. 

 

We performed this type of binding site evaluation for all of the co-crystallized protein 

pairs in PDB that also appeared in our set of gold interactions.  While the PDB data is 



scarce, it provides the ultimate evaluation of our predictions.  We applied our method 

separately in two regimes.  In the first, we  train on Prosite motifs and evaluate on those 

motifs that cover less than half of the protein length (Figure S5a in Additional data file 

2); we pruned the motif set in this way because short motifs provide us with more 

information about the binding site location.  In the second regime, we followed the 

protocol of Riley et al., and trained on Pfam domains and evaluaed PDB binding sites on 

the more reliable Pfam-A domains; we also tried to both train and evaluate on Pfam-A 

domains but the result is worse in comparison to training on all Pfam domains (data not 

shown).   

 

Overall, the PDB co-crystallized structures contain 96 potential binding sites covered by 

Prosite motifs, of which 50 (52.1%) are verified as actually binding, and the remaining 46 

are verified to be non-binding.   Similarly, PDB contained 317 possible bindings between 

a Pfam-A domain and a protein, of which 167 (52.7%) are verified in PDB.  We ranked 

all possible bindings according to their predicted binding confidences.  With Prosite 

motifs (Figure 5a), the area under ROC curve (AUC) is 0.68; note that random 

predictions are expected to have AUC of 0.5.   For Pfam-A, when trained on all Pfam 

domains, we achieved an AUC of 0.786 (Figure 5b). 

 

We compared our results to those obtained by the DPEA method of Riley et al., [20, 23]  

the parsimony approach of Guimaraes et al. [18], and an integrated approach of Lee et al. 

[19].  DPEA computes confidence scores between two motif types by forcing them to be 

nonbinding, and computing the change of likelihood after reconverging the model with 

this change.  InSite differs from DPEA in two main characteristics: Its confidence 

evaluation method, which is designed to evaluate the likelihood of binding between two 

particular proteins at a particular site; and the integration of multiple sources of noisy 

data. Guimaraes et al. use linear programming to find the confidence scores to a most 

parsimonious set of motif pairs that explains the protein-protein interactions.  Lee et al. 

use the expected of number of motif-motif interactions for a pair of Pfam-A domain types 

across four species, and integrate them with GO annotation and domain fusion to 

generate a final ranking on pairs of motif types.  Note all these methods generate 



confidence scores on pairs of motif types, regardless of what protein pairs they occur on.  

To use these predictions for the task of estimating specific binding regions, we define the 

confidence that motif M on Protein A binds to Protein B as the maximum confidence 

score between motif type M and all the motif types that appear on protein B.  For 

Guimaraes et al. and Lee et al., only the confidence scores between Pfam-A domains are 

available so we only compared their results with our Pfam-A predictions. We re-

implemented DPEA and compared with both our Prosite and Pfam-A predictions.  As we 

can see, in both Prosite and Pfam evaluations (Figure 5), the AUC obtained by InSite are 

the highest (0.786 and 0.680 for Pfam and Prosite respectively) while Lee et al. (0.745 

for Pfam only) comes second (Kolmogorov-Smirnov p-value < 0.0002).  InSite is able to 

reduce the error rate (1 – AUC) by 16.2% compared with Lee et al.  For Pfam, the AUC 

values are 0.619 and 0.620 for Riley et al. and Guimaraes et al. respectively. For Prosite, 

the AUC value for Riley et al. is 0.601. Compared to these two methods, InSite achieves 

a significant error reduction of 43.7% and 19.8% for Pfam and Prosite respectively. 

 

If we consider the top 50 predictions made by Insite, 33 (66.0%) are correct for Prosite 

and 45 (90.0%) are correct for Pfam-A. In comparison, only 52.1% and 52.7% are 

expected to be correct using random predictions for Prosite and Pfam-A, respectively.  

The enrichment of known binding sites in our top predictions indicates that InSite is able 

to distinguish actual binding sites from non-binding sites.  In comparison, the proportion 

of top 50 predictions verified are 82.0% (Pfam-A) for Lee et al, 80.0% (Pfam-A) for 

Guimaraes et al., and 80.0% (Pfam-A) and 58.9% (Prosite) for Riley et al. Note that, in 

the case of Pfam-A, Riley et al. predicted all top 24 pairs correctly because they are 

derived from the binding of PF00227 (Proteasome) with itself.  This motif pair has the 

highest score and it appears in 24 binding events, all of which are correctly verified by 

PDB.  The lack of granularity (i.e. pairs mediated by the same motif types have the same 

score) in Riley et al. helped in those top predictions, but hurt it in the remaining 

predictions, thus resulting in overall lower performance. 

 

More generally, a pair of motif types may have multiple occurrences over different 

protein pairs (Figure S6 in Additional data file 2).   The previous methods [18-20] assign 



the same confidence score to all of them.  In order to demonstrate that InSite is able to 

make different predictions even when both motifs involved are the same, we ran InSite 

by forcing a pair of motif occurrences between two proteins to be non-binding and use its 

change of likelihood as how confident we are about whether these two motifs bind to 

each other. As an example, transcription factor S-II (PF01096) and RNA polymerase 

Rpb1 domain 4 (PF05000) are predicted to be more likely to bind when occurring 

between Rpb9 and Rpo31 than when occurring between Dst1 and Rpo21. This happens 

because there are fewer motifs on Rpb9 than on Dst1 and the motifs on Rpo31 is a subset 

of motifs on Rpo21. Although some alternative motif pairs between Rpb9 and Rpo31 

have high affinity, overall they provide fewer alternative binding sites than those between 

Dst1 and Rpo21.  Furthermore, Rpb9 and Rpo31 are more likely to interact than Dst1 and 

Rpo21. Therefore our final confidence score combines the affinity between the two 

motifs, the presence of other motifs on the proteins, and the interaction probability 

between the two proteins.  Indeed, PDB verifies PF01096 and PF05000 to bind between 

Rpb9 and Rpo31, but not between Dst1 and Rpo21.  The same reasoning applies to 

binding site predictions between a motif and a protein. 

 

Understanding disease-causing mutations in human. 

While a systematic validation is not possible in human, due to the very low coverage of 

known protein-protein interactions or binding sites, we performed an anecdotal 

evaluation that focuses on interactions of particular interest for human disease.  Many 

genetic diseases in human have been mapped to a single amino-acid mutation and 

cataloged in the Online Mendelian Inheritance in Man (OMIM) database [31].  The exact 

pathway that leads to the disease is unknown for many of the mutations.  As disrupting 

protein-protein interaction is one way by which a mutation causes disease [30], our 

binding site predictions can suggest one possible mechanism for such diseases:  If a 

mutation in protein A occurs on a motif M that is predicted to be the binding site to a 

protein B, and B is involved in pathways related to the disease, it is likely that the 

mutation disrupts the binding and thus leads to the disease.  We ran InSite with two 

different experimental setups: one using only reliable protein-protein interactions, and the 

other using both reliable and high-throughput protein-protein interactions.  Table 1 lists 



our top ten predictions from each experiment with relevant literature references. As in 

yeast, we exclude those motifs that cover more than half the length of the protein, so we 

focus on short motifs that provide us with more information about the binding site.  Note 

that eight predictions are among the top ten in both experiments, showing the robustness 

of our method to different protein-protein interaction data.  A full list of our predictions is 

available from our website. 

 

Some of our predictions are directly validated in the literature.  One of the top ten 

predictions involves Vitamin K-dependent protein C precursor PROC, which is predicted 

to bind to Vitamin K-dependent protein S precursor PROS1.  There are four regions on 

PROC – Gla domain, EGF-like domain 1, EGF-like domain 2, and Serine proteases 

domain. Prosite has ten motifs on the protein, covering those four regions.  InSite 

predicted two of the motifs (PS01187 and PS50026), which correspond to EGF-like 

domain 1, to be the binding site to PROS.  Ohlin et al. [42] showed that antibody binding 

to the region of the EGF-like domain 1 reduces the anticoagulant activity of PROC, 

apparently by interfering with the interaction between activated protein C and its cofactor 

PROS1.  Therefore, they propose the domain to be the binding site on PROC with PROS, 

thus validating our prediction.  A mutation in the domain causes thromboembolic disease 

due to protein C deficiency [43], matching the fact that defects in PROS1 are also 

associated with an increased risk of thrombotic disease (Uniprot:P07225).  These facts 

support a hypothesis in which the mutation on PROC leads to the disease by disrupting 

the interaction with PROS1. 

 

Another of our highest-confidence binding site predictions is: ‘the BH3 motif on BAX 

binds to BCL2L1’ (Figure 6).  BCL2 has inhibitory effect on programmed cell death 

(anti-apoptotic) [44] while BAX is a tumor suppressor that promotes apoptosis.  

Approximately 21% of lines of human hematopoietic malignancies possessed mutations 

in BAX, perhaps most commonly in the acute lymphoblastic leukemia subset [45].  There 

are four motifs on BAX (Figure 6) and we predict BH3 to be the binding site to BCL2 

with high confidence (top 1.9%).  By searching the literature, we found that Zha et al. [46] 

showed that the BH3 motif on BAX is involved in binding with BCL2, thus validating 



our binding site prediction.  However, BH3 is also required for homo-oligomerization of 

BAX, which is necessary for the apoptotic function [47]; thus, the BH3 mutation may 

cause the disease by disrupting the BAX homo-oligemorization.  From the BCL2 side, 

the associated binding site involves the portion where three motifs – BH1, BH2, and BH3 

– reside [48].  If we examine the InSite binding site predictions on BCL2, none of the 

motifs is predicted to have high confidence, with the best one – BH3 – ranked at the 8.7th 

percentile. Therefore, InSite has the flexibility to predict the binding site in one direction, 

but not the other direction. 

 

Some of our predictions (Table 1) are not directly verified but are consistent with 

existing literature evidence, and provide biologists with testable hypotheses for possible 

further investigation.  As one example, a mutation at codon 404 in MMP2 causes 

Winchester syndrome [43]. However, it is not well understood how diminished MMP2 

activity leads to the changes observed in the disease [49].  InSite predicted the zinc-

binding peptidase region on MMP2, which contains codon 404, to be the binding site to 

BCAN.  As BCAN is degraded by MMP2 [50], the peptidase region we predicted is 

likely to be the binding site that catalyzes the degradation of BCAN.  Codon 404 is 

believed to be essential for the peptidase activity [43], consistent with our hypothesis that 

its mutation might disrupt the interaction between MMP2 to BCAN.  Our binding site 

prediction provides one possible hypothesis that implicates BCAN in the process of 

pathogenesis. 

 

We also listed all top predictions are that are confirmed to be wrong (Table 1).  In one 

case, the prediction involves the Ephrins signature, which is an example of a “signature 

motif”.  Such motifs represent the most conserved region of a protein family or a longer 

domain, and are used by Prosite to conveniently identify the longer domain.  InSite 

cannot distinguish the behavior of the signature from the domain.  Therefore, when the 

signature motif is predicted to be the binding site, the actual binding could take place in 

the longer domain.  In the case of the Ephrins signature, Prosite uses the motif to identify 

the Ephrins protein family. Therefore, we would not generally expect a binding site to 

overlap the motif. 



 

In a similar validation to our OMIM analysis, we considered a recent data set by 

Greenman et al. [32] produced by screening protein kinases for mutations associated with 

cancer.  However, in many cases,, it is unknown whether a mutation is a driver mutation 

that causes the cancer, or whether it is a passenger mutation that occurs by chance in the 

cancer cell.  Even for driver mutations, the mechanism by which it leads to cancer is 

often unknown.  We considered those mutations that fall in InSite predicted binding sites. 

Among all the potential driver mutations identified by Greenman et al., the one most 

likely to be a binding site according to the InSite predictions is the SH2 domain of FYN 

in SRC family (Figure 7), which is predicted to bind to proto-oncogene vav (VAV1).  

Greenman et al. found three mutations on FYN and predicted with 0.985 probability that 

at least one of them is a driver mutation [32].  This finding suggests the hypothesis that 

the mutation disrupts the binding of SH2 domain to VAV1, and thus causes cancer.  

Indeed, a literature search shows that the SH2 domain on FYN is known to bind to VAV1 

[51], thereby validating our binding site prediction.  Moreover, VAV1 was discovered 

when DNA from five esophageal carcinomas were tested for their transforming activity 

[52], which is compatible with the fact that FYN is implicated in squamous cell 

carcinoma [32].  These observations support the disruption of the FYN-VAV1 binding as 

the cause for the disease in this case. 

 

Discussion 

 

Obtaining computational models for the mechanism of protein-protein interactions is an 

important but challenging task.  Other computational methods for discovering protein-

protein interaction sites fall into two broad categories.  The first are docking methods that 

try to match two protein structures to find the best sites on both structures [53].  These 

methods only apply to solved protein structures, which are currently available only for a 

small number of proteins.  To enlarge the set of applicable proteins, some methods [54-57] 

use homology to proteins with known structures, but many proteins do not, as yet, have 



any homologues with solved structure, necessitating the use of other techniques.  The 

second class of methods use local sequence information to predict interaction sites [58, 

59].  These methods typically train a machine learning algorithm (such as a neural 

network) to identify interaction sites, and therefore require solved complexes to provide 

examples of interaction sites as training data.  As such examples are relatively scarce, the 

available data might not sufficiently capture the sequence variability found in interaction 

sites, which can lead these methods to have low sensitivity.  Our approach uses only the 

widely-available sequence information and raw protein-protein interaction data, and 

therefore offers the promise of identifying binding sites on a genome-wide scale. 

 

Our approach is most similar to previous work that tries to predict motif-motif or domain-

domain interactions.  Some of this work focused on best explaining the observed protein-

protein interactions [20, 23, 60-62].  Whereas other methods aim to compute the general 

affinity between two motif types, InSite also explicitly computes the confidence that a 

specific motif occurrence mediates the binding of a specific interacting protein pair. 

These finer-grained predictions allow us to identify the specific mechanism for their 

interaction, whereas other methods that make predictions by only looking at motif types 

would not be as appropriate for this purpose.  For example, the DPEA method by Riley et 

al. computes confidence by forcing two motif types to have affinity 0.  In contrast, InSite 

aims to compute predictions for a specific motif occurrence on an interacting protein pair, 

and thus forces a particular motif occurrence on a particular protein to be non-binding to 

another protein.  The more global perturbation used by Riley et al. would not be as 

appropriate for this purpose: It may well be the case that a good alternative binding 

hypothesis exists for the interaction at a particular protein pair, but disallowing all 

interactions between a pair of motif types causes significant reduction to the likelihood in 

other protein pairs.  Indeed, our method outperforms DPEA, and other state-of-the-art 

method like the parsimony approach by Guimaraes et al. [18] and the integrative 

approach by Lee et al. [19], at identifying binding regions between an interacting protein 

pair.  Other work [18, 19, 63, 64] infers motif-motif interaction using other types of 

information, such as co-evolution; this method is shown [64] to generate predictions that 



have little overlap with DPEA-style methods, and thus can be combined with InSite to 

gain wider coverage.  

 

InSite is able to integrate different sources of assays in a principled way and learn a 

different observation model for each assay.  InSite explicitly models the noise from high-

throughput assays and the possibility that two proteins in the same complex do not 

physically interact.  This allows us to use the noisy data as well as assays aimed at 

identifying complexes, so our interaction dataset is much bigger than any that have been 

used before, providing both higher coverage and increased robustness.  Our data 

integration method is unique in not utilizing a “gold standard” set of interactions (such as 

ones obtained from low-throughput experiments) for training, thereby greatly increasing 

the size of the training set and avoiding possible biases in the training set.  InSite also 

easily accommodates other types of indirect evidence, such as co-expression, GO 

annotation, and domain fusion, on both protein-protein interactions and motif-motif 

interactions. This type of integration may be useful in other settings as well. We note that 

the evidence model, although an important component in our approach, is not the main 

factor in its performance.  Indeed, if we remove the indirect evidence like co-expression, 

GO annotation, and domain fusion from our model, the AUC values decreases by only 

0.033 and 0.019 for Pfam and Prosite respectively (Figure S7 in Additional data file 2). 

Therefore our result using protein-protein interactions alone is still significantly better 

than the methods of Guimaraes et al. and Riley et al., which also only rely on protein-

protein interaction, and it beats Lee et al, which uses multiple types of data including 

indirect evidences. On the other hand, if we add our evidence model onto the model of 

Riley et al., the AUC values increase by only 0.017 and 0.009 for Pfam and Prosite 

respectively.  Therefore, the main component in the performance of our model is the 

construction of predictions that are targeted at specific protein pairs and take their 

particular context into account. 

 

There are several limitations to the ability of our approach to identify correct binding 

sites.  Not all motifs mediate protein interactions through direct binding.  Some motifs 

help shape the structure of the proteins.  Mutations in the motifs would alter the structure 



of the protein and disrupt the bindings at some other places.  Other motifs are signatures 

that are markers for longer domains.  It is the longer domain, and not the signature motif, 

that serves as the actual binding site.  InSite will not be able to distinguish these cases.  

One approach would be to classify motifs into either structural or binding motifs by using 

partially supervised learning with labeled binding sites from PDB or prior biological 

knowledge.  A motif may appear multiple times in a protein, but InSite is unable to 

distinguish between them, and therefore cannot predict which copy is the actual binding 

site.  Most importantly, some binding sites may not be covered by any motif in our set of 

conserved motifs (Figure S1,5b in Additional data file 2), and thus our current model has 

no way to predict interactions involving them.  Clearly, we can apply InSite to a larger set 

of motifs, e.g., eMotifs [65, 66], but there may still be motifs that cannot be identified by 

conservation.  Thus, the most significant extension of our method would be to allow it to 

search for a motif in cases where there is no pre-existing motif that provides a good 

explanation for the observed interactions.  One possible approach may be an integration 

of InSite with approaches that use sequence to predict binding sites directly [58, 59].   

 

Conclusions 

 

In the past few years, there is a growing suite of methods that successfully utilize large 

amounts of available data and sophisticated machine learning methods to solve problems 

in structural biology for which experimental methods are difficult and time-consuming.  

These tasks include protein structure prediction [67], RNA structure prediction [68, 69], 

side-chain prediction [70], protein surface prediction, and more.   Following in this 

tradition, we have developed InSite, a novel probabilistic method for predicting regions at 

which two interacting proteins bind to each other.  InSite makes use of three types of data 

sets:  direct protein-protein interaction assays; indirect evidence on protein-protein 

interactions such as co-exression; and  indirect evidence on motif-motif interactions such 

as domain fusion.  It provides a principled integration of these data sets, which may be 

noisy, and may not correspond to direct physical interaction.  In future work, the 

flexibility of the framework would allow us to easily extend it to include more types of 



information, including structural information.  For example, we can use motif-motif 

bindings in PDB to construct a more informed prior for the motif-motif affinity. 

 

InSite makes targeted, testable predictions for specific binding regions in an interacting 

protein pair.  As we have shown, these predictions can be used to generate hypotheses 

regarding the mechanism by which certain mutations in a protein can disrupt interactions, 

and give rise to phenotypic changes, including human disease such as cancer.  We put all 

predictions with cancer annotation or OMIM mutation online, allowing a more 

comprehensive analysis by experts and follow-on wet-lab experiments. We have also 

made the InSite software publicly available via the web to allow this tool to be used by 

researchers.  Due to the universal mechanisms underlying biochemical interactions, the 

tool can be applied to any organisms, and even to protein-protein interaction data 

generated from multiple organisms. 

 

Materials and Methods 

 

Sources of data. 

 

S. cerevisiae.  We constructed “observed interaction” variables for each of the assays, 

as follows.  For the yeast two-hybrid datasets of [9, 10], these variables are binary-valued.  

They take the value “true” if the pair is observed to interact in the assay, and the value 

“false” if both of the two proteins appeared in the assay but the pair was not observed to 

interact.  However, as the number of unobserved interactions grows quadratically in the 

number of proteins assayed, this procedure would result in too many non-interacting pairs; 

we therefore keep only those pairs that appeared in some other high-throughput dataset, 

to allow evidence integration. For the co-AP assays, we selected the interactions with 

confidence score above 0.2 from [4] and all interactions from [2], using their confidence 

scores as continuous observation values.  We constructed a “gold standard” set of S. 

cerevisiae protein-protein interactions from MIPS [15] and DIP [16], downloaded on 



March 21st, 2006. We extracted from MIPS those physical interactions that are non-high-

throughput yeast two-hybrid or affinity chromatography. For DIP, we picked non-genetic 

interactions that are derived from small-scale experiments or verified by multiple 

experiments.  We use this set of reliable interactions as “gold standard” interactions in 

our model.  For “gold standard” non-interactions, we picked 20,000 random pairs [35] 

and removed those that appear in any interaction assays.  For these gold standard pairs, 

we fixed the value of the “actual interaction” variable accordingly.  In all other protein 

pairs, we leave the actual interaction variables as unobserved.  This procedure results in a 

dataset of 101,065 protein pairs, of which 4,200 were gold standard interactions and 

18,666 gold standard non-interactions, and a total of 108,924 observations. See Figure 

S8 in Additional data file 2. 

 

We computed expression correlation using a compendium of time series data obtained in 

different environmental conditions [71-79].  The compendium has 76 different conditions 

with a total of 403 time points.  For each pair of proteins, we computed the Pearson 

correlation coefficient across all the time points. We also annotated our proteins with 

biological process from GO. For each pair of proteins, we computed the GO distance as 

the log size of the smallest common category shared by the two proteins. The smaller the 

value, the more specific category the two proteins belong to, and thus they are more 

likely to interact [34]. 

 

In one run, we used sequence motifs from the Prosite database [14] excluding the non-

specific motifs, mostly post-translational modification motifs that appears across many 

proteins.  We removed motifs that are annotated as “Compositionally biased” or “DNA or 

RNA associated”.  This gives us 708 different types of motifs with a total of 2,808 motif 

occurrences.  In another run, we used sequence motifs from the Pfam domain database 

[38], which results in 8,089 different types of domains with a total of 11,767 domain 

occurrences. 

 

We construct a “domain fusion” variable for each pair of Prosite motifs or Pfam domains. 

Its value is 1 if the two motifs ever co-occur on the same protein in any species. Its value 



is 0 otherwise. Note that we use the term “domain fusion” here although it can also refer 

to motifs. We also looked at whether the two motifs appear together in any biological 

process category based on the mapping table from Pfam to GO [17].  If they do, we 

assign the “shared GO” variable to be 1 and we assign it to be 0 otherwise. 

 

Human.  We used a high confidence yeast two-hybrid assay [6] and the Human Protein 

Reference Database (HPRD), a resource that contains known protein-protein interactions 

manually curated from the literature by expert biologists [36] (downloaded on Jan. 24th, 

2006).   The union of these data sets gives us 6,688 reliable interactions.  We also used 

yeast two-hybrid assay from Stelzl et al. [5] and an assay that identify co-complex 

proteins [37] with its confidence score as our observation value. This gives us 5,723 

observations. As in yeast, we picked 20,000 random pairs as our gold non-interactions 

[35] and removed those that appear in any interaction assays. We used the same Prosite 

motifs, which gives us 687 different types of motifs with a total of 3,034 motif 

occurrences. 

 

Learning procedure. 

 

Probabilistic model.  Our probabilistic model has three components.  The first 

(Figure S2 in Additional data file 2, black box) formalizes the binding model described 

above:  For each protein pair in our model, and each pair of motifs on the two proteins, 

we have a variable indicating whether binding took place at this motif pair.  The prior 

probability that a specific motif pair binds is the affinity of the corresponding motif types.  

The overall interaction of the proteins is a disjunction of these binding events, and of an 

additional “spurious binding” variable that accounts both for noise in some interaction 

datasets and for binding outside of motifs in our database.  The second component of our 

model (Figure S2 in Additional data file 2, red box) addresses the problem that very few 

protein interactions are known with certainty.  Yeast two-hybrid assays can be noisy [24, 

25], with a non-trivial fraction of both false positives and false negatives, while affinity 

purification detects protein complexes instead of the pairwise physical interactions that 

are the basis for inferring direct binding sites.  Moreover, indirect evidence such as co-



expression, though useful, only weakly correlates with the actual interactions. Therefore, 

to integrate many assays coherently, we use a naïve Bayes model [24, 26, 27].  In this 

model, we have an “Interaction variable” for each protein pair, whose value is “true” only 

when the pair actually interacts.  This variable is unobserved in most cases, but serves to 

aggregate information from a set of partial and noisy assays, which are viewed as “noisy 

sensors” for the interaction variable.  The quantitative dependencies of these sensors are 

modeled differently for different assays, to allow for variations in false positive and false 

negative rate [25, 80], and for confidence scores accompanying certain assays [2, 4].  

There may be multiple observation variables attached to a protein pair, whose interaction 

probability summarizes the signal from all the assays and is used to learn the binding 

affinity. The third component of our model (Figure S2 in Additional data file 2, blue box) 

takes into consideration the noisy evidence on motif-motif interactions. A binding 

variable between two motifs may have multiple evidences, all of which serve as noisy 

sensors for the binding variable and are integrated using a naïve Bayes model in the same 

way as in the second component. 

 

More formally, each interacting or non-interacting pair of proteins ji PP ,  is described by 

an entity ijT . A pair of motifs in two proteins can potentially bind and induce an 

interaction between the corresponding proteins.  We encode this assumption by 

introducing a variable abij BT .  for each pair of motifs a in Pi and b in Pj, which represents 

whether the pair of motif occurrences actually binds. The probability that they bind 

depends on the affinity between the motifs.  Therefore, we define: P(Tij.Bab = true) = θab 

and  P(Tij.Bab = false) = 1- θab, where abθ  is the affinity between motifs a  and b . Note 

that this affinity is a feature of the motif pair and does not depend on the proteins in 

which they appear.  We place a Dirichlet prior distribution over the value of abθ , which is 

the same for θ  across all motif pairs. We must also account for interactions that are not 

explained by our set of motifs, such as the binding between amino acids not included in 

our motif set.  Thus, we add a spurious binding variable STij . .  The probability that 

spurious binding occurs is given by m

ssij mtrueSTP )1(1)().( θθ −−===  where m is 



proportional to the average (geometrical) number of amino acids not covered by any 

motif in the two proteins.  It represents the fact that the more amino acids we have 

outside the motif set, the more likely the interaction is induced by something other than 

binding between motifs.  Two proteins interact if and only if some form of binding occurs, 

whether by a motif pair or by spurious binding.  Thus, we define a variable ITij . , which 

represents whether protein iP  interacts with protein jP , to be a deterministic OR of all the 

binding variables STij .  and abij BT . .  We note that Riley et al. did not include a spurious 

interaction variable in their model, but rather used 0.001, regardless of the protein length, 

as the probability of interaction when there is no motif pair between two proteins. 

 

 

To account for the fact that our experimental assays are not direct and reliable 

measurements of physical protein-protein interactions, we define the observation 

variables OTij .  to be the interactions observed in the experimental assays and indirect 

evidence like co-expression and GO distance, which are noisy sensors for the actual 

interaction variable ITij . .  Note that an actual interaction variable may have several 

observation variables if the pair appears in multiple assays.  For those assays with binary 

observations, nij OT .  is a binary variable and the probability it is true depends on ITij .  and 

the type of assay.  Therefore, we can account for the different false positive and false 

negative rates in different assays.  For Gavin et al., we assume its confidence score gij OT .  

to be Gaussian distributions, whose mean and variance depends on the ITij . .  For Krogan 

et al., we assume the confidence score kij OT .  has a uniform distribution if ITij .  is false 

(non-interacting) and has an exponential distribution if ITij .  is true (interacting).  For co-

expression, we assume the Pearson correlation coefficient eij OT .  to be Gaussian 

distributions, whose mean and variance depends on the ITij . . For GO distance, we 

assume its value oij OT .  to be an exponential distribution when ITij .  is false and a mixture 

of Gaussian and uniform distribution when ITij .  is true (interacting). In the case of 



human confidence score wij OT .  from Ewing et al., we use a mixture of Gaussian and 

indicator functions with different parameters depending on the value of ITij . . Note that 

each parametric form was selected by examining the empirical distribution and assessing 

what model would fit it well. 

 

We use abR  to describe a pair of motif a and motif b. We introduce a variable gab ER .  to 

represent whether they share same GO biological process category and another variable 

fab ER .  for whether they appear together in a domain fusion event. Both variables are 

probabilistically dependent on the binding variable abij BT .  and serve as its noisy sensors. 

Note that abR  is the same regardless which protein pair ijT  it appears in. We use different 

models for domain fusion and GO distance to account for their different correlation with 

the actual motif-motif interactions. Note parameters of the evidence models for protein-

protein interactions and motif-motif interactions are all learned from the data. Some of 

the learned values are illustrated in Figure S2 in Additional data file 2. 

 

An instantiation of our probabilistic model is illustrated in Figure S2 in Additional data 

file 2 and the conditional probabilities involved are summarized below: 
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where βα ,  are the hyper-parameters in the Dirichlet distribution, 8.68 is the maximum 

value of the GO distance, n enumerates the different type of yeast two-hybrid assays, Og 

is Gavin’s assay, Ok is Krogan’s assay, Oe is co-expression, Oo is GO distance, Ow is 

Ewing’s confidence score, Eg is shared GO motif function, Ef is domain fusion, U() is 

uniform distribution, and I() is indicator function. The observation parameter vector ηηηη is 

the union of σρλσµη ,,,,,, wn .  

 

Learning.  The model defines a joint probability over the entire set of attributes, which 

is the product of all local conditional probability models shown above. Our learning 

objective is to find affinities between motifs θθθθ, probability of spurious binding θθθθs, and the 



parameters for the observation models ηηηη, which maximize the probability over observed 

evidence on protein-protein interactions T.O, the partial assignment to the actual 

interactions T.I, and the observed evidence on motif-motif interactions R.E.  Our 

algorithm uses an iterative procedure based on the Expectation-Maximization (EM) 

algorithm to find the local maximum. In the E-step, we compute the conditional 

probabilities for the binding variables ST.B,T. , and the actual interaction variables T.I , 

given η,θθ s, , T.O, R.E, and use those as the soft assignments to the variables.  Define: 
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In the M-step, we compute relevant expected sufficient statistics using the computed soft 

marginal probabilities as soft assignments.  We use maximum likelihood estimation to re-

estimate the parameters η,θθ, s .  This step can be executed efficiently in closed form, 

using standard methods, for the parameters ηθ, . To estimate sθ , we need to decompose 

it into m variables and apply EM to this approximate form.  See Additional data file 1 for 

details.  We repeat the E-step and M-step until the change of likelihood is less than a 

threshold. Since, in the next phase, we force each motif-protein pair to be non-binding 



and compare the change of likelihood Liaj, we have to makes sure the threshold used here 

for convergence is at least a magnitude smaller than Liaj, so the noise would not 

overwhelm the signal. Here we set the threshold to be 0.01 in terms of change of log-

likelihood. Note that Riley et al. used the expected likelihood to test convergence, which 

does not optimize the joint likelihood and may not always increase over the EM steps.  

 

To estimate the two hyper-parameters, βα ,  of the Dirichlet distribution, we used two-

fold cross-validation on the PDB data set.  In this regime, we select the hyper-parameters 

so as to optimize performance on one PDB fold, and evaluate performance on the other 

fold; thus, no data in the test set was used to estimate any of the parameters or hyper-

parameters in the model.   

 

 

Binding confidence estimation.  Since we explicitly model the binding events 

between a pair of motifs and between amino acid pairs outside the motif set, it gives us a 

way to compute the confidence that a motif on a protein binds to another protein.  Here 

the intuition is that if a motif is non-binding, it is dispensable from the model.  We first 

run our model until convergence.  To predict whether motif a on protein i is the binding 

site to protein j, we force a not to bind with any motif on protein j (Figure S4 in 

Additional data file 2).  We rerun our algorithm with the above constraint and use the 

change in likelihood as the confidence score of our prediction, which we denote to be Liaj.  

A high score indicates that forcing a not to be the binding site induces a big change in 

likelihood and is unfavorable.  A low score suggests the binding site is dispensable from 

the model with competing hypotheses that can explain the observed interactions, and thus 

the prediction is questionable. Unlike the motif affinities θab learned from the previous 

step, here our confidence score Liaj depends on both proteins i and j and is different for 

different proteins. 

 

Model initialization.  If a motif pair does not appear between any pair of interacting 

proteins, we set its affinity to be 0, an assignment guaranteed to maximize the joint 

likelihood; this helps simplify our model structure.  We set the initial affinity for the 



remaining motif pairs based on the frequency they appear between interacting protein 

pairs [81].  The observation parameters ηηηη for the evidence models are initialized based on 

empirical counts. 

 

PDB co-crystallized structure. 

We extracted all structures from PDB that have at least two co-crystallized chains, and 

whose chains are nearly identical to S. cerevisiae proteins.  We define two residues to be 

in contact if the closest distance between their two respective heavy atoms is less than 5 

Å. This definition is similar to that of [59]. A motif is said to bind to a protein if they 

contain a residue pair that is in contact. 

 

OMIM. 

To relate our predictions to mutations that cause human genetic diseases, we extracted the 

allelic variants from OMIM [31], which describes where the mutations occur and their 

related diseases.  We get a total of 737 mutations covering 131 motifs in 97 proteins of 

our training data. 

 

Cancer polymorphism. 

To relate our predictions to mutations in cancer, we extracted more than 1,000 somatic 

mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 

518 protein kinase genes in 210 diverse human cancers [32]. We focused only on those 

proteins that are predicted to contain driver mutation. This results in a total of 652 

mutations covering 489 motifs in 249 proteins of our training set. 
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Captions for figures 

 

Figure 1: Example illustrating the intuition behind our approach 

In this simple example, there are five proteins (elongated rectangles) with four 

interactions between them (black lines); proteins contain occurrences of sequence motifs 

(colored small elements within the protein rectangles).  Pairs of motifs on two proteins 

may bind to each other and hence mediate a protein-protein interaction if they have high 

affinity.  The observed interactions are best explained via high affinity for the motif pair 



a,d, explaining the interactions P1-P3 and P1-P4, and high affinity for the pair b,e, 

explaining the interactions P1-P5 and P2-P5.  We can now estimate the confidence in a 

prediction “Pi binds to Pj at motif M” by (computationally) “disabling” the ability of M 

to mediate this interaction.  For example, the prediction that P1-P4 bind at motif d has 

high confidence, because d is the only motif that can explain the interaction.  Conversely, 

the prediction that P1-P3 bind at motif d has lower confidence, because the motif pair a,c 

can provide an alternative explanation to the interaction.  The prediction that P2-P5 bind 

at motif e also has high confidence: although interaction via binding at b,c would explain 

the interaction, making b,c a high-affinity motif pair would contradict the fact that P2 and 

P3 do not interact. 

 

Figure 2: Overview of our automated procedure 

Our automated procedure (InSite), which has two main phases, takes as input protein 

sequences and multiple evidences on protein-protein interactions and motif-motif 

interactions. 

(a) Motifs, downloaded from Prosite or Pfam database, were generated based on 

conservation in protein sequences.  Protein-protein interactions are obtained from a 

variety of assays, including: a small set of �reliable� interactions, which recurred in 

multiple experiments or were verified in low-throughput experiments; a set of 

interactions from yeast two-hybrid assays; and a set of interactions from the co-affinity 

precipitation assays of Krogan et al. [4] and Gavin et al. [2] 

(b) The first phase (Figures S2 and S3 in Additional data file 2) uses a Bayesian network 

to estimate both the motif pair binding affinities and the parameters governing the 

evidence models of protein-protein interactions and motif-motif interactions, where the 

model is trained to maximize the likelihood of the input data.  Note that the affinity learnt 

in this phase only depends on the type of motifs, regardless of which protein pair they 

occur on. 

(c) In the second phase (Figure S4 in Additional data file 2), we do a protein-specific 

binding site prediction based on the model learned in the previous phase.  For each 

protein pair, we compute the confidence score for a motif to be the binding site between 



them.  Note that the confidence scores computed here are protein specific and can be 

different for the same motif depending on the context it appears in. 

 

Figure 3: Verification of protein-protein interaction predictions 

Verification of protein-protein interaction predictions relative to reliable interactions.  

Protein pairs in the hidden set in a 10-fold cross validation are ranked based on their 

predicted interaction probabilities (green, red, and black curves for Prosite, Pfam, and 

naïve Bayes respectively).   Each point corresponds to a different threshold, giving rise to 

a different number of predicted interactions.  The value on the X-axis is the number of 

pairs not in the reliable interactions but predicted to interact.  The value on the Y-axis is 

the number of reliable interactions that are predicted to interact.  The blue and brown 

curves (as relevant) are for pairs ranked by Gavin�s and Krogan�s scores respectively. 

(a) Predictions for all protein pairs in our data set. As we can see, InSite with Pfam is 

better than InSite with Prosite, which is in turn better than the naïve Bayes model. All 

those three models integrate multiple data sets and thus have higher coverage than other 

methods using a single assay alone. The cross and circle are the accuracies for interacting 

pairs based on Ito�s and Uetz�s Y2H assays respectively. 

(b) Predictions only for pairs in Gavin�s assay, providing a direct comparison of our 

predicted probability with Gavin�s confidence score on the same set of protein pairs. 

(c) Predictions only for pairs in Krogan�s assay, providing a direct comparison of our 

predicted probability with Krogan�s confidence score on the same set of protein pairs. 

 

Figure 4: Binding site predictions within the RNA Polymerase II complex: 

(a) A schematic illustration of interactions within the RNA Polymerase II complex 

revealed by its 3D structure.   Each circle with number k corresponds to the protein 

�Rpbk� (e.g., Rpb1). 

(b) One of our top predictions is �Pfam-A domain PF01096 on Rpb9 binds to Rpb1�.  

Both Rpb9 and Rpb1 are part of the co-crystallized RNA Polymerase II complex in PDB 

(1I50).  Rpb9 is shown as the light green chain with the surface accessible area of the 



domain rendered in white; Rpb1 is shown as the light orange chain with its residues that 

are in contact with the domain shown in orange, which verifies our prediction. 

(c) Binding site predictions for interactions involving Rpb10. A red arrow connects a 

motif to a protein it binds to as revealed by its 3D structure. A dashed black arrow 

represents a non-binding site. The numbers on the arrow are the ranks based on our 

predicted binding confidences.  We assigned confidence values to a total of 123 motif-

protein pairs in this complex. In this case, all six PDB verified binding sites (red arrows) 

are ranked among the top half, while all five non-binding sites have low confidence 

values with ranks below 100. 

(d) ROC curve for our motif-protein binding sites predictions within the RNA 

Polymerase II complex.  There are 123 possible binding sites within the complex that 

involves the Pfam-A domains in our dataset, out of which 68 (55.3%) are actually 

binding according to its 3D structure. The possible binding sites are ranked by our 

predicted binding confidences.  The X-axis is the number of non-binding sites within the 

complex that are predicted to be binding.  The Y-axis is the number of PDB verified 

binding sites that are also predicted to be binding. The purple line is what we expect by 

chance. 

 

Figure 5: Global verification of binding site predictions 

Verification of motif-protein binding site predictions relative to solved PDB structures.  

Possible binding sites are ranked based on our predicted binding confidences.  The X-axis 

is the number of sites that are non-binding in PDB that are predicted to be binding.  The 

Y-axis is the number of PDB verified binding sites that are also predicted to be binding.  

The green and red curve are for our InSite with Prosite and Pfam respectively, which is 

tailored to binding site prediction and explicitly models the noise in the different 

experimental assays.  The brown curve is for the DPEA score as in Riley et al. The gray 

curve is for the score derived from the parsimony approach of Guimaraes et al. The black 

curve is for the integrative approach by Lee et al. The purple curve is what we expect 

from random predictions. 



(a) Result using Prosite motifs.  The area under the curve if we normalize both axes to 

interval [0,1] are 0.680, 0.601, 0.5 for InSite, DPEA by Riley et al., and random 

prediction respectively. 

(b) Result when we train on Pfam domains and evaluate the PDB binding sites only on 

Pfam-A domains, as in the protocol of Riley et al.  The area under the curve if we 

normalize both axes to interval [0,1] are 0.786, 0.745, 0.619, 0.620 for InSite, integrative 

approach by Lee et al., DPEA by Riley et al., and parsimony approach by Guimaraes et 

al. respectively. 

 

Figure 6: Illustrations of human binding site predictions 

Schematic representation of our top prediction and its validation by literature.  BAX has 

four motifs: BH3 motif (PS01259), BH1 (PS01080), BH2 (PS01258), and BCL2-like 

apoptosis inhibitors family profile (PS50062).  BH3 (in red) has the highest change in 

log-likelihood among those motifs, and is among one of our top predictions (1.9%). Reed 

et al. (1996) confirmed that BH3 on BAX is involved in binding with BCL2. On the other 

hand, the binding site on BCL2 involves portions where all of BH1, BH2, and BH3 reside. 

Interestingly, none of these motifs on BCL2L1 have high confidence to be binding site, 

with the highest one also being BH3 and ranked in the top 8.7%. Mutations in BAX (in 

position shown by the black bar) cause leukemia. 

 

Figure 7: 3D structure of one of our top predictions 

A fragment of FYN with SH2 and SH3 domain is crystallized in PDB (ID: 1G83) and is 

visualized here. The fragment accounts for about 30% of the total protein length and is 

rendered in a ribbon representation. The SH2 domain, which is colored in green, is 

predicted to be the binding site to VAV1. The position of the potential driver mutation 

found in somatic cancer cell is highlighted by the white balls. 

 

Table and caption 

 

Table 1: Top binding site predictions in human 



We list the top 10 binding site predictions in human that contain disease causing mutation. 

The top panel is the predictions when using only reliable protein-protein interactions. The 

bottom panel is the predictions when integrating high-throughput interactions.  Eight 

predictions appear in both panels, showing our method is robust to the change in the input 

data.  Shown are the protein, its interacting partner, the motif that is predicted to be the 

binding sites to its partner, the disease caused by the mutations inside the motif, and the 

pubmed reference to the interaction.  Three of top predictions are verified by literature 

(bold and italic), four in the top panel and three in the bottom panel are supported by 

existing evidence (bold), one in the top panel and two in the bottom panel are confirmed 

to be wrong (italic), and the remaining two predictions do not have literature information.  

In some cases, it is possible that the mutations at the binding site disrupt the interaction, 

and thus lead to the disease. 

 

Protein Partner Binding site OMIM disease Pubmed 

PROC PROS1 PS01187 Protein C deficiency 1615482 

PROC PROS1 PS50026 Protein C deficiency 1615482 

BAX BCL2L1 PS01259 Leukemia 9531611 

MMP2 BCAN PS00142 Winchester syndrome 10986281 

STAT1 SRC PS50001 STAT1 deficiency 9344858 

VAPB VAMP2 PS50202 Amyotrophic lateral sclerosis 9920726 

VAPB VAMP1 PS50202 Amyotrophic lateral sclerosis 9920726 

MMP2 BCAN PS00546 Multicentric osteolysis, … 10986281 

PLAU PLAT PS50070 Alzheimer disease 7721771 

UCHL1 S100A7 PS00140 Parkinson disease 12032852 

 

Protein Partner Binding site OMIM disease Pubmed 

PROC PROS1 PS01187 Protein C deficiency 1615482 

PROC PROS1 PS50026 Protein C deficiency 1615482 

BAX BCL2L1 PS01259 Leukemia 9531611 

MMP2 BCAN PS00142 Winchester syndrome 10986281 



PTPN11 TIE1 PS50055 Noonan syndrome 1 10949653 

VAPB VAMP2 PS50202 Amyotrophic lateral sclerosis 9920726 

MMP2 BCAN PS00546 Multicentric osteolysis, … 10986281 

EFNB1 SRC PS01299 Craniofrontonasal syndrome 8878483 

PLAU PLAT PS50070 Alzheimer disease 7721771 

UCHL1 S100A7 PS00140 Parkinson disease 12032852 

 

PS01187: Calcium-binding EGF-like domain 

PS50026: EGF-like domain 

PS01259: BH3 motif 

PS00142: metallopeptidase zinc-binding region 

PS50001: SH2 domain 

PS50055: PTP type protein phosphatase 

PS50202: Major sperm protein (MSP) domain 

PS00546: cysteine switch 

PS01299: Ephrins signature 

PS50070: Kringle domain 

PS00140: Ubiquitin C-terminal hydrolase cysteine active-site 
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